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Abstract
Reinforcement learning can lead to rapid changes in performance. Computational accounts of reinforcement learning align with
classic learning theory, as reported by Sutton and Barto (1998, 2018) and suggest that trial-to-trial changes in performance follow
rapid but decelerating learning curves. Although there is some support for a link between changes in behavioural and neural data,
evidence has been inconclusive. Here, we had a computational model and human participants learn a novel language through
trial-and-error while recording electroencephalographic data. By conducting linear mixed-effects models of trial-to-trial analyses,
we sought to determine whether neural signals were indicative of a learning process and whether they were related to changes in
behaviour. We found that neural measures did diminish with trial-to-trial changes in performance and that they were predictive of
behavioural adaptations in both simulated and empirical data. These neural signals are theorised as reward prediction errors—the
computational difference between expectations and outcomes—and here we provide compelling evidence that they reflect an
underlying learning process that parallels behavioural adaptation.

Keywords Reinforcement learning .Rewardpredictionerrors .Rewardpositivity .Feedbackerror-relatednegativity .Behavioural
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Introduction

Changes in performance during the early stages of learning
have long been recognised to follow non-linear trends
(Newell and Rosenbloom 1981; Rosenbloom and Newell
1987). Performance curves demonstrate rapid changes in the
initial stages of acquisition that depreciate with succeeding trials
(i.e. the power law of practice: Newell and Rosenbloom 1981;
Rosenbloom and Newell 1987). It is hypothesised that rapid,
early performance improvements occur due to the development
of high-level representations of knowledge within which asso-
ciations are made between the constituents of what is being
learned (Newell and Rosenbloom 1981; Rosenbloom and

Newell 1987). The non-linear nature of the rapid, early changes
seen in performance is robust as it is observed across learning
domains—perception, motor, and cognitive (Johnson et al.
2003)—as well as, across species (e.g. Klaus et al. 2011).
Indeed, a wealth of research has begun to probe the speed to
which reinforcement learning can occur (Botvinick et al. 2019).
Reinforcement learning is the process whereby associations are
facilitated by performance feedback in a trial-and-error fashion
(Sutton and Barto 1998, 2018). When considering small sets of
items, learning has been demonstrated to be incredibly quick
(Krigolson et al. 2014; see also Botvinick et al. 2019).

Changes paralleling those seen in behaviour are also
hypothesised within the brain. For instance, the seminal com-
putational modelling work of Schultz et al. (1997) and others
(e.g. FitzGerald et al. 2015) simulated changes of dopamine—
a neurotransmitter tied to learning mechanisms—and deter-
mined that diminishing effects of dopamine at reward delivery
followed parabolic change akin to the aforementioned chang-
es in behaviour (see also Botvinick et al. 2019; Mnih et al.
2015). More recently, a similar pattern of results has been
observed in studies with humans using electroencephalogra-
phy (EEG). In a seminal study, Holroyd and Coles (2002)
proposed that frontal brain signals reflect the arrival of a
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dopaminergic reward prediction error signals from the basal
ganglia to the anterior cingulate cortex via the mesolimbic
dopamine system. Reward prediction errors have been pro-
posed to reflect the computational difference between one’s
expectation and the actual outcome (Krigolson 2018; Proudfit
2015). When learning, humans are able to tune their expecta-
tions to better predict outcomes and reward prediction errors
diminish (Bellebaum and Daum 2008; Eppinger et al. 2008;
Krigolson et al. 2009, 2014; Luft 2014; Luque et al. 2012;
Sailer et al. 2010; Williams et al. 2018).

For instance, Krigolson et al. (2009) had participants learn
to categorise two families of complex shapes through trial-
and-error. Within each trial, participants indicated whether
the presented shape and family name matched and were pre-
sented with valid feedback as to their performance (i.e. there
was a correct response). Unbeknownst to participants, a third
family of blobs existed which were not tied to responses but
instead provided equiprobable feedback (i.e. the outcome was
random). Krigolson et al. (2009) found that reward prediction
errors diminished for learnable stimuli, but not for unlearnable
stimuli, indicating that the modulation of these signals was
reflective of a learning process. It may be logical to assume
that these signals would then reflect behavioural adaptations,
yet this has not always been the case (see Luft 2014; Walsh
and Anderson 2012). A potential cause of these inconsis-
tencies is that the evidence is majorly derived from investiga-
tions comparing stages of learning—e.g. comparing the be-
ginning of learning to the end of learning—rather than across
trials. As the speed of learning can be rapid (e.g. Krigolson
et al. 2014), aggregating data across trials may distort the true
associations between neural changes and behavioural adapta-
tions. As such, a key issue with the existing body of literature
is that previous research has not focused on trial-to-trial
changes in neural prediction errors to see if they align with
behavioural adaptations.

Here, we sought to determine whether reward prediction
errors were indicative of trial-to-trial changes in performance
and whether these learning-related changes paralleled behav-
ioural adaptations. To accomplish this, we derived theoretical
predictions via a reinforcement learning computational model
and collected empirical data from human participants.
Specifically, a computational model and human participants
learned sixty words of a novel language by developing
symbol-word associations. We then conducted trial-to-trial
analyses by averaging across items (i.e. symbols) while pre-
serving single trials. If reward prediction errors (measured via
the reward positivity event-related potential component; see
Krigolson 2018; Proudfit 2015) were indicative of a learning
process, we would expect to see them diminish across trials.
Furthermore, if there existed a relationship between behav-
ioural and neural changes, we would be able to predict behav-
ioural adaptations from neural changes with linear mixed-
effects models. Accordingly, we hypothesised that the reward

positivity would diminish across trials and that trial-to-trial
changes in the amplitude of this component would be con-
comitant to behavioural adaptations.

Methods

Participants

Thirty undergraduate students (19 female; mean age, 20 years
old [19 years old, 21 years old]) from the University of
Victoria participated in the experiment. All participants had
normal or corrected-to-normal vision, no known neurological
impairments, and volunteered for extra course credit in a psy-
chology course. One participant was removed from analyses
due to missing behavioural data, while another was removed
due to technical errors in EEG data collection. All participants
provided informed consent approved by the Human Research
Ethics Board at the University of Victoria.

Apparatus and Procedure

Participants performed an experimental task while seated in a
sound dampened room and in front of a 19^ LCD computer
monitor. To make responses during performance of the task,
they used a handheld 5-button RESPONSEPixx controller
(VPixx, Vision Science Solutions, Quebec, Canada). The ex-
perimental task was programmed in MATLAB (Version 9.3,
Mathworks, Natick, USA) with the Psychophysics Toolbox
extension (Version 3.0.14, Brainard 1997).

Within the task, participants learned a novel language
through a trial-and-error shaping process (see Fig. 1).
Specifically, participants learned an English translation for
each symbol presented. It is important to note that although
they were learning one-to-one translations of a novel language
(i.e. a vocabulary), this is only one aspect to learning a lan-
guage, and the task did not involve learning other features of a
language (e.g. grammar). The experiment began with a train-
ing block wherein participants learned the symbol-response
relationship for six words. This was followed by the main
experiment where participants were to learn three new words
each block which were mixed in with three randomly selected
old words (that they had already learned). There were 19
blocks and participants learned a total of 60 words (6 in the
training block and 54 in the main experiment blocks). The
order of which nouns were included in each block was ran-
domly determined across participants so that no two partici-
pants were presented the same order of nouns. The trials with-
in the training and main phases were identical otherwise.

The trials began on a grey background [RGB: 64 64 64]
where a black [RGB: 0 0 0] fixation cross appeared for 700 to
1000 ms, followed by a symbol written in black [RGB: 0 0 0]
that was 4.5 cm2 in size. The symbols used were taken from
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Tamil and Manipuri alphabets and were all paired with an
English word meaning (see Online Resource 1, Table S1).
On each trial, the target symbol was randomly chosen from
the set of six symbols for the block, 500 ms after symbol
presentation, four black [RGB: 0 0 0] English words appeared
in the arrangement of a fixation cross (top, bottom, right, and
left) below the symbol. One of the choices was the correct
answer, and the three distractor words (incorrect answers)
were randomly chosen from the remaining five words. The
locations of all four words were randomly determined.
Participants were then prompted to make a response by press-
ing one of the buttons on the RESPONSEPixx controller
(VPixx, Vision Science Solutions, Quebec, Canada). Once a
selection was made, the selected word turned white [RGB:
255 255 255] for 500 ms, the screen changed to a fixation
for 700 to 1000 ms, and then a feedback stimulus appeared
for one second. The feedback stimulus was a black [RGB: 0 0
0] ‘✓’ or ‘X’ corresponding to correct and incorrect, respec-
tively. Participants were informed of the respective feedback-
outcome interpretations. Feedback was deterministic and did
not carry any external motivators such as monetary or point
accumulations. If a selection was not made within 6 s, an
exclamation mark would appear to signify that the participant
took too long to respond, and these trials were removed from
analyses. Each block contained ten trials and would repeat
until participants received 90% or higher accuracy. Once par-
ticipants achieved 90%, theywould progress to the next block.

Additionally, before and after the word learning phase
of each block, participants saw three sentences and were to
determine what they said through a multiple-choice selec-
tion. Specifically, sentences were composed of three sym-
bols, each presented one at a time for 1000 ms and follow-
ed by a black [RGB: 0 0 0] fixation cross for 700 to 1000
ms. Half of the sentences were congruent (e.g. I went store)
while the other half were incongruent (e.g. I went shirt).
The words involved in the sentences included the new
words introduced in the respective blocks. Four sentences
(response options) would then appear in the arrangement
of a fixation cross, and participants were to select the cor-
rect sentence. No feedback of their accuracy was given. As
this was not the focus of the current article, this data was
discarded from all analyses. After each block, participants
were provided a self-paced rest period.

Data Acquisition and Processing

EEG data were recorded from a 64-electrode ActiCAP system
(Brain Products GmbH, Munich, Germany) using the Brain
Vision Recorder software (Version 1.10, Brain Products
GmbH, Munich, Germany). All electrodes were referenced
to a common ground, and electrode impedances were kept
below 20 kΩ. EEG data were sampled at 500 Hz, amplified
through the ActiCHamp amplifier (Revision 2, Brain Products
GmbH, Munich, Germany), and filtered using an antialiasing
low-pass filter of 245 Hz. To ensure temporal accuracy, EEG
markers and stimuli were aligned via a DATAPixx synchroni-
sation unit (VPixx, Vision Science Solutions, Quebec,
Canada).

All EEG data were processed using Brain Vision Analyzer
software (Version 2.1.1, Brain Products GmbH, Munich,
Germany). First, electrodes that were excessively noisy or
damaged were removed from the analysis. The data was
down-sampled to 250 Hz, re-referenced to an average mastoid
reference, and put through a dual-pass Butterworth filter (pass
band, 0.1 to 30 Hz) and a notch filter centred at 60 Hz.
Segments were then extracted from the EEG data from
1000 ms before to 2000 ms after events of interest (i.e. feed-
back stimulus onset). This segment width (3000 ms) was cho-
sen to facilitate the correction of eye blinks and movement
artefacts via independent component analysis (ICA).
Following data segmentation, a restricted fast ICAwith classic
PCA sphering was used. Components reflecting ocular arte-
facts were manually selected and rejected via inspection of
component head maps and correspondence between their re-
lated factor loadings and the related EEG data. Following
component selection and removal, the EEG data were recon-
structed with the remaining ICA components. Electrodes that
were initially removed were next interpolated via the methods
of spherical splines. Data was then re-segmented (− 200 to
600 ms around feedback stimulus onset) into six conditions
(Incorrect, Correct 1, Correct 2, Correct 3, Correct 4, and
Correct 5). The incorrect condition refers to all trials within
which the participant selected the wrong word respective of
the symbol. The Correct 1 to Correct 5 conditions refers to the
first, second, third, fourth, and fifth time the participants saw a
specific symbol and correctly identified the associated word.
For example, across six trials, a participant may have the
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Fig. 1 A single trial of the experiment. After a fixation cross a symbol is presented, followed by four response options. Once a response is selected, it is
highlighted in white. After a fixation cross, simple correct and incorrect feedback is presented



following feedback for the word ‘Happy’: incorrect, correct,
correct, correct, correct, correct, and the following feedback
for the word ‘Shirt’: correct, incorrect, correct, correct, cor-
rect, correct. Happy would then be considered as: incorrect,
correct 1, correct 2, correct 3, correct 4, correct 5, and shirt
would be considered as correct 1, incorrect, correct 2, correct
3, correct 4, correct 5. Next, all segments were baseline
corrected using the 200 ms prior to the feedback stimulus
onset following which all segments were processed with an
artefact rejection algorithm that rejected trials that violated a
15 μV/ms gradient or a 150 μV absolute difference criteria.
After pre-processing, event-related potential (ERP) condition-
al waveforms were created by averaging the segmented data
for each electrode for each condition. A difference waveform
was then created by subtracting the Incorrect waveform
(which included all incorrect trials) from the Correct 1 wave-
form. The first correct (Correct 1) waveform was used for the
construction of the different waveform because the amplitude
of the reward positivity diminished over the experiment (as
participants learned, see the ‘Results’ section). Grand average
difference (Correct 1 − Incorrect) and conditional (Incorrect,
Correct 1, Correct 2, Correct 3, Correct 4, and Correct 5)
waveforms were created by averaging corresponding ERP
waveforms across participants.

A 50-mswindow surrounding the averaged peak time of the
difference waveform across participants was used to extract the
peak of the reward positivity and all conditions for each par-
ticipant at electrode FCz, consistent with previous work
(Krigolson 2018). The peak time for each participant was de-
termined as the maximum deflection of the reward positivity of
different waveforms between 250 and 350 ms following feed-
back stimulus onset. Although the reward positivity is tradi-
tionally measured as the difference between correct and incor-
rect waveforms, the reward positivity amplitude is theorised to
be modulated by reward signals and not loss signals (Foti et al.
2011; Holroyd et al. 2008; Proudfit 2015). Thus, we indirectly
measured the reward positivity amplitude across the experi-
ment solely using the raw correct feedback waveforms (and
not the difference between these correct waveforms and incor-
rect waveforms). This approach is in line with previous work
from our laboratory (Krigolson et al. 2014; Krigolson 2018;
Williams et al. 2018), wherein there have not been sufficient
incorrect outcomes to quantify the reward positivity as the
difference between correct and incorrect outcomes.

Reinforcement Learning Computational Model

Within this study, a reinforcement learning computational
model simulated task performance in terms of trial-to-trial
changes in accuracy, reaction times, and reward prediction
errors. The computational model was used to determine par-
allels between reinforcement learning theory (i.e. Sutton and
Barto 1998, 2018) and the observed behavioural and neural

data. On each trial, the model was presented with one symbol
and four possible responses. The model would then select one
of four responses with the goal of learning the correct
stimulus-response associations. Each stimulus-response asso-
ciation carried a value, V(s, a), which the model used to select
responses via a SoftMax equation:

P s; aið Þ ¼ eV s;aið Þ=τ

∑4
j¼1Σe

V s;a jð Þ=τ : ð1Þ

where P(s,ai) is the probability that each action (response) is
selected, V(s, ai) is the value of the current stimulus with the
selected response i, and V(s, aj) is the value of the current
stimulus with each possible response j. i refers to the selected
response of the possible four responses in the current trial, and
these four responses are a subset of the 60 responses (one for
each stimulus) across the experiment. j refers to each of the
four possible responses in the current trial. τ is the tempera-
ture. Here, the denominator is summed over all present
responses.

The response was then compared with the target response
which elicited a prediction error:

δ¼r−V s; aið Þ ð2Þ
where δ is the prediction error and r is the reward on the
current trial (+ 1 for correct, − 1 for incorrect; we selected +
1 and − 1 to comply with mathematical computations and not
to imply reward and punishment, respectively). Stimulus-
response values were adjusted as a factor of this prediction
error and a learning rate (α):

V s; aið Þ¼V s; aið Þþδα: ð3Þ

Additionally, on correct trials, the same adjustment was
used to devalue all other responses (including those not cur-
rently presented) to this symbol as well as all other symbols to
this response (i.e. counterfactual learning; see Fischer and
Ullsperger 2013):

V sk ; alð Þ¼V sk ; alð Þ−δα: ð4Þ
where sk refers to all stimuli not presented on the current trial and
al refers to all responses that were not selected. This was because
during this task, a new symbol may be presented with new or old
responses. If a response had been learned previously, then the
participant (or model) should know not to select this response for
the new symbol. For example, if you know that Ø means ‘shirt’,
you also know that it does not mean ‘plane’ and that ∂ does not
mean ‘shirt’. As with participants, once themodel reached a 90%
or higher accuracy rate in 10 trials, it would move to the next
block where three new symbols were introduced and three old
symbols were randomly selected from all previously learned
symbols. This process continued until the model successfully
learned the symbol-response associations.
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The model was tuned 28 times (matching our sample size)
in terms of three free parameters: learning rate, temperature,
and initial weight. To determine these parameter values, the
native MATLAB ‘fmincon’ function was used. The parame-
ters were constrained with the boundaries of 0.001 to 1.0 for
learning rate, 0.001 to 10 for temperature, and − 1.0 to 1.0 for
initial weight values for stimulus-response pairings. The
boundaries for learning rate were to include only values where
learning was possible (i.e. not a learning rate of 0), and to
include extreme cases of learning (i.e. a learning rate of 1.0
is where the previous trial would completely determine one’s
expectations of the current trial). The lower boundary of the
temperature was determined to always include exploration
(i.e. not a temperature of 0), and the upper boundary was
determined through experimentation of the model.
Specifically, the upper temperature boundary was selected be-
cause early explorations of different models (where we were
determining which parameters to include) never elicited tem-
perature values exceeding 10. The boundaries of the initial
weight were selected to match the delivered reward value
when the model was incorrect (− 1) and correct (+ 1). The
negative summed absolute correlation between the model sim-
ulation data and the corresponding participant data for all
measures (accuracy, reaction time, and reward positivity; each
model tuning considered all three measures simultaneously)
was used to determine best fit parameters (learning rate, 0.47
[0.42, 0.55]; temperature, 5.82 [5.18, 6.46]; initial weight,
0.04 [− 0.02, 0.09]). Finally, we ran the model with the best
fitting parameters (i.e. from each participant) to generate mod-
el data used within analyses.

Accuracy rates were measured as the proportion of times
the model was correct across words. Reaction times were
measured as the averaged difference between the probability
of the correct response being selected relative to the average of
the other three incorrect response probabilities. Thus, although
simulated reaction times were proportional to empirical reac-
tion times, they were not in units of milliseconds but rather
constrained to values from 0 to 1. Prediction errors were com-
puted as described above.

Statistical Procedures

All descriptive statistics, t tests, effect sizes (effsize package;
Torchiano 2017), and linear mixed-effects models (lme4 pack-
age: Bates et al. 2015; see Winter 2013 and www.bodowinter.
com/tutorials.html for a tutorial) were computed using R
(Version 3.3.0, The R Foundation, Vienna, Austria) and R
Studio (Version 0.99.902, RStudio Inc., Boston, USA). All
plots were created using the ggplot2 R package (Wickham
2016).

To determine the function of trial-to-trial learning curves,
we computed linear mixed-effects models for all measures of
empirical and model data. These tests compared linear:

Measure∼β0 þ β1Trial þ TrialjParticipantð Þ þ ε ð5Þ
exponential:

log Measureð Þ∼β0 þ β1Trial þ TrialjParticipantð Þ þ ε ð6Þ
and power:

log Measureð Þ∼β0 þ β1log Trialð Þ þ TrialjParticipantð Þ þ ε ð7Þ

functions via R2
GLMM values (variability explained for gener-

alised linear mixed models as computed by the MuMIn R
package—Bartoń 2018; see Johnson 2014; Nakagawa et al.
2017; Nakagawa and Schielzeth 2013) where ‘Measure’
corresponded to accuracy, reaction times, or reward positivity
amplitudes and ‘Trial’ referred to the first five trials (for be-
havioural analyses) or the first five trials that resulted in a
correct response (for reward positivity amplitude analyses)
for each word. Here, we only analysed the first five trials for
each word because participants rapidly learned a large quan-
tity of words, and we were thus only able to present each word
a small number of times. Thus, we focused on five trials to
ensure more included stimuli and increased statistical power.
Please note, as there are some limitations to comparing linear
mixed-effects models with different error distributions and
with different model complexities, we have supplied addition-
al analyses using generalised linear mixed models in
Supplemental Material.

Additionally, we computed linear mixed-effects models to
determine any trial-to-trial relationships between behavioural
data and the reward positivity for both empirical and model
data. Specifically, we analysed whether the reward positivity
amplitudes were able to predict accuracy rates and reaction
times:

BehaviouralMeasure∼β0 þ β1RewardPositivity

þ TrialjParticipantð Þ þ ε ð8Þ

The assumptions of linearity, homoskedasticity, and
normality of residuals were met for all empirical data.
The reinforcement learning computational model data vi-
olated the assumptions of linearity, and on some occa-
sions, the assumptions of homoskedasticity and normality
of residuals. As the linear mixed-effects model formulas
corresponded with learning curves and the computational
models were consequent of empirical data, no corrections
were made. We have here focused on effect sizes as a
method for model evaluat ion (Cumming 2013).
Specifically, we compared and contrasted models using
measures of fit and specified the model with the largest
variability explained to best describe our data. Although
we have focused our interpretation of the data on effect
sizes, we have also included null hypothesis significance
tests with an alpha criterion of 0.05.
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Results

The Computational Model Produced Power Learning
Curves

The reinforcement learning computational model was imple-
mented in order to examine the theoretically predicted trial-to-
trial changes in behavioural and neural activity. We found that
accuracy rates increased across learning (see Fig. 2a), reaction
times decreased across learning (see Fig. 2b), and reward pre-
diction errors decreased across learning (see Fig. 2c). The
changes in these measures were all best accounted for by
power law functions rather than exponential or linear trends
(see Fig. 3, Table 1).

Empirical Measures Adhered to Power Learning
Curves

To determine whether empirical data paralleled theoretical
predictions of the computational models, trial-to-trial analyses
on behavioural and neural data were conducted. Across learn-
ing, accuracy rates increased (see Fig. 2a) and reaction times
decreased (see Fig. 2b). Congruent to model findings, changes
in these measures were best accounted for by power learning
curves rather than exponential or linear trends (see Fig. 3 and
Table 1).

To determine neural effects of learning, the reward positiv-
ity was analysed. First, we determined that feedback stimuli
elicited a reward positivity as indicated by the difference be-
tween the correct and incorrect conditions, Md = 5.19 μV
[2.82 μV, 7.56 μV], t(27) = 4.49, p = 0.0001, d = 0.85
[0.29, 1.41] (see Fig. 4a). Next, we observed a diminishment
in the amplitude of the reward positivity across learning (see
Figs. 2c and 4b). In conjunction with the reinforcement learn-
ing computational model, the change in reward positivity am-
plitudes were best accounted for by power law functions rath-
er than exponential or linear trends (see Fig. 3 and Table 1).

Neural Learning Signals Indicated Behavioural
Adaptations

Finally, we determined whether any relationships existed be-
tween behavioural and neural measures of learning for both
model and empirical data (see Fig. 5). Reward prediction er-
rors as produced by the computational model were strongly
associated with accuracy rates and reaction times (see
Table 2). Congruently, empirical reward positivity amplitudes
were strongly associated with accuracy rates and reaction
times (see Table 2).

Discussion

Here, we provide compelling evidence that the reward posi-
tivity reflects an underlying learning process responsible for
behavioural adaptations. Our investigations first focused on
theoretical predictions as derived by a reinforcement learning
computational model which demonstrated that reward predic-
tion errors diminished across trials and that these learning-
related changes were strongly predictive of behavioural
changes in accuracy rates and reaction times. Indeed, empiri-
cal analyses also demonstrated a trial-to-trial diminishment of
the reward positivity which was strongly predictive of behav-
ioural adaptations.

A major implication of these findings is that the reward
positivity ERP component does, in fact, reflect a learning pro-
cess. This supports the multi-faceted nature of processes that
elicit reward prediction errors (Weinberg et al. 2014).
Particularly, the reward positivity has also been shown to re-
flect the processing of value-based outcomes (e.g. Brush et al.
2018). Hedonic influences are often investigated using a two-
door paradigm where participants are to select one of two
doors to achieve an award (see Proudfit 2015). In this type
of paradigm, responses often have no influence on outcomes
in that performance feedback is equiprobable (i.e. it is unlearn-
able), and outcomes are translated into rewards (monetary or
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Fig. 2 Behavioural and neural data adhere to power learning curves. a
Accuracy rates across first five trials, b reaction times across first five
trials, c reward positivity amplitudes across first five correct trials. Each
grey line represents an individual participant’s data corrected for between
subject variability. Black points reflect grand averaged participant data
with 95% within-subject credible intervals (Nathoo et al. 2018). Black

lines are the best-fit power trend line. Red dashed lines are the best-fit
power law functions of the reinforcement learning computational model.
‘Trials’ refers to the averaged first-five trials for each word regardless of
whether the response was correct or incorrect, while ‘Correct Trials’ re-
fers to the averaged first-five trials for each word where the response was
correct



points). Indeed, external rewards have been shown to impact
reward prediction error signals (Brush et al. 2018). Here, we
instead implemented a learnable task without any external
rewards and found an impact on the reward positivity. Thus,
to fully understand reward prediction errors and their biolog-
ical correlates—the ventral striatum and the anterior cingulate
cortex (ACC; Holroyd and Coles 2002; Holroyd andMcClure
2015; Holroyd and Yeung 2012)—it is necessary to consider
both learning and the processing of hedonic outcomes. Recent
work by Holroyd and colleagues (Holroyd and Yeung 2012;
Holroyd and McClure 2015) integrated learning with hedonic
outcomes when they theorised that the ACC is the core to
learning the values of high-level behaviours. Specifically, they
posited that learning leads to efficiency by balancing cognitive
effort with future reward—or, in other words, that learning-
related signals within the ACC drive adaptive behaviour.

Nonetheless, whether there even exists a relationship be-
tween neural learning signals and behavioural adaptations
has been controversial. Although there is evidence linking
changes in reward prediction errors to behavioural adapta-
tions, there are similarly findings challenging these notions
(see Luft 2014; Walsh and Anderson 2012). For example,

Holroyd and Krigolson (2007) provided evidence of a link
between neural learning signals and reaction times when
they were investigating the effects of reward expectancy
in a time estimation task. They found that both reward
prediction error amplitudes and reaction times were larger
for the unexpected condition than the expected condition,
and that there was a positive association between behaviour
and neural signals. By contrast, Walsh and Anderson (2011)
found that reward prediction errors diminished with learn-
ing even when accuracy rates remained constant. In this
study, participants were presented with three stimuli, each
with a unique probability of reward. On each trial, they were
to select between two of the three stimuli with the goal of
maximising rewards. In one of their conditions, they explic-
itly told the participants of the stimulus probabilities, thus
accuracy rates were near perfect and unchanging, and yet
still found a shaping of neural learning signals. They con-
cluded that independent learning systems exist within the
brain, those that guide behaviour and those that track re-
ward prediction errors.

The inconsistency of the aforementioned findings may be in
part due to an artefact of comparing aggregated data across

Table 1 Statistical outcome of trend analyses for accuracy rates, reaction times, and reward positivity amplitudes for model and empirical data

Model data Empirical data

Source Trend F
value

p value R2
GLMM F

value
p value R2

GLMM

Accuracy Linear 280.57 < 0.0001 0.6687 163.50 < 0.0001 0.7597

Exponential 227.70 < 0.0001 0.6209 118.40 < 0.0001 0.7634

Power 435.53 < 0.0001 0.8140 151.92 < 0.0001 0.8475

Reaction time Linear 390.56 < 0.0001 0.9641 167.29 < 0.0001 0.7747

Exponential 359.40 < 0.0001 0.9692 213.56 < 0.0001 0.8095

Power 344.57 < 0.0001 0.9771 190.79 < 0.0001 0.8881

Reward
positivity

Linear 587.64 < 0.0001 0.8128 44.07 < 0.0001 0.6543

Exponential 626.68 < 0.0001 0.8244 40.88 < 0.0001 0.6540

Power 963.08 < 0.0001 0.9596 53.34 < 0.0001 0.6679

Comput Brain Behav (2020) 3:189–199 195

Fig. 3 Model simulated and empirical fits indicate power learning curves
better describe changes in behavioural and neural data than linear and
exponential trends. Three trend fits for accuracy, reaction time, and

reward positivity measures. Goodness of fit measures reflects R2
GLMM

values. See also Table 1



conditions (e.g. early and late blocks). Reinforcement learning is
a quick process that can take as little as one trial (Krigolson et al.
2014), thus averaging over trials may distort data and blur the
true relationship between neural learning signals and behavioural
adaptations. Our analyses here, however, focused on trial-to-trial
changes across learning which best captures the quick process
that is reinforcement learning with small state spaces.
Specifically, by conducting linear mixed-effects modelling, we
determined similar and associated learning curves across behav-
ioural and neural measures. Our computational simulations sug-
gested that reward prediction errors were heavily influential on

both accuracy rates and reaction times, and our empirical find-
ings provided compelling evidence for a strong relationship be-
tween neural learning signals and behavioural adaptations. In
other words, changes in neural learning signals were indicative
of behavioural adaptations.

The implications of these findings are multi-faceted, but
here, we focus on the potential of real-time monitoring and
future predictions of performance. In the present study, we
were able to capture changes in neural learning signals at a
trial-to-trial level—a technique that could theoretically be im-
plemented in real time. The caveat is that we averaged across
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Fig. 5 A strong relationship between neural and behavioural measures
for all model simulated and empirical data. Top: relationship between
reward positivity amplitudes and accuracy rates, bottom: relationship
between reward positivity amplitudes and reaction times. Lines reflect
grand averaged linear regression for participant and model data. Each

participant and simulation contributed five data points for each plot—
one for each of the first five trials. The intensity of colours scales to trial
in that trial 1 is the darkest colours and trial 5 is the lightest colours. See
also Table 2

Fig. 4 Reward positivity waveforms. a Conditional waveforms of
incorrect feedback and first correct trial feedback indicating that
feedback elicited neural learning signals. b Conditional correct
feedback waveforms across correct trials indicating that the reward

positivity amplitude diminishes across trials of learning. Grey bar
indicates range in which mean peaks were computed. Positive voltages
are plotted up



items (i.e. words) and so, this cannot directly transfer to real-
timemonitoring. It is feasible, however, to further our findings
by applying computational techniques such as machine learn-
ing in order to monitor performance via neural signals within
single trials. Machine learning is an approach previously ap-
plied to other domains of neuroscience, such as when Müller
et al. (2008) had participant type characters by deciphering
single-trial EEG. The results would be twofold. First, we
would achieve real-time access to an unbiased account of
knowledge. We say unbiased because neural signals of learn-
ing are not influenced by many factors that distort behavioural
measures, such as guessing. Second, we would be able to use
these signals to predict success on future performance. The
implications of these outcomes extend across environments
ranging from education to the workplace and with the expo-
nential rise of portable EEG systems (e.g. Krigolson et al.
2017), these applications are already possible.

Limitations

A possible alternative explanation to our findings, however, is
rooted in the frequency within which correct feedback is de-
livered. Indeed, the reward positivity is sensitive to frequency
effects (Holroyd 2004; Krigolson 2018). For example, it has
been demonstrated that the reward positivity is larger for un-
expected events relative to expected events (e.g. Williams
et al. 2017). Here, as participants learn to correctly associate
symbols with their English translations, the number of correct
responses (and corresponding feedback) increases, making
this event more expected which may diminish the reward pos-
itivity. This alternative is unlikely, however, given that our
computational model corresponded with empirical findings
yet does not have a mechanism that reflects frequency effects.
That is not to say that frequency effects are not at all an influ-
ence in our findings, but that frequency effects are possibly an
engrained component that facilitates changing reward predic-
tion errors and learning. What remains is whether frequency
effects have any influence on learning and, if so, to what
degree. Future research would need to dissociate frequency
effects from learning to determine trial-to-trial changes in the
reward positivity. Hassall and Krigolson (2013) developed a
two arm bandit task which would be suitable to answer this

question. In their task, participants were presented with two
coloured squares, one of which results in win feedback 60% of
the time and the other 10% of the time. The task was to select
the square that more often resulted in wins. Thus, learning
occurred, but due to the probabilistic nature of each square,
win and loss outcomes were near 50% (see also Krigolson
et al. 2017; Krigolson 2018).

A limitation to the current research involves creating
analogues between the simulated and empirical data.
Indeed, empirical findings replicated those derived by
our computational model; however, this does not neces-
sarily indicate that human reward processing involves the
exact mechanisms as within our reinforcement learning
model. Although there is a long history of reinforcement
learning computational modelling which provides promise
that there are tight similarities between human processing
and computational models (see Sutton and Barto 1998),
we did not investigate how different mechanisms of the
models affected trial-to-trial variations in the data and
what implications this may have on what we understand
of human processing. In order to further explore this, it
would be necessary to systematically lesion the model
(either via removal or disruption of mechanisms/
parameters such as learning rate) to determine how this
affects accuracy rates, reaction times, and reward predic-
tion errors. Further, to fully understand the link between
these models and learning-related trial-to-trial human pro-
cessing, it would also be necessary to conduct research
within clinical populations where these same mechanisms
are disrupted. Indeed, there is ample research investigat-
ing clinical populations and reward prediction errors with-
in a computational modelling context (see Holroyd and
Umemoto 2016); however, this field research has yet to
explore trial-to-trial learning-related variations.

Conclusion

In summary, our goal was to determine whether reward pre-
diction errors were indicative of a learning process that paral-
lels behavioural adaptation. For both theoretical predictions as
derived by a computational reinforcement learning model and
empirical data from human participants, reward prediction

Table 2 Statistical outcomes of associations between the reward positivity and behavioural measures for model and empirical data

Model data Empirical data

Measure F
value

p value R2
GLMM F

value
p
value

R2
GLMM

Accuracy 690.03 < 0.0001 0.8965 8.87 0.0035 0.8368

Reaction
time

150.10 < 0.0001 0.9912 13.33 0.0004 .8594
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errors diminished with learning. Additionally, both computa-
tional simulations and empirical data indicated that neural
signals of learning were predictive of accuracy rates and reac-
tions times. In other words, reward prediction errors reflect a
learning process that is indicative of behavioural adaptation.
This research demonstrates potential to expand into the real-
time monitoring and predictions of future performance within
environments ranging from education to the workplace.
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