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A B S T R A C T   

What makes a decision difficult? Two key factors are conflict and surprise: conflict emerges with multiple competing responses and surprise occurs with unexpected 
events. Conflict and surprise, however, are often thought of as parsimonious accounts of decision making rather than an integrated narrative. We sought to determine 
whether conflict and/or surprise concurrently or independently elicit effortful decision making. Participants made a series of diagnostic decisions from physiological 
readings while electroencephalographic (EEG) data were recorded. To induce conflict and surprise, we manipulated task difficulty by varying the distance between a 
presented physiological reading and the category border that separated the two diagnoses. Whereas frontal theta oscillations reflected surprise – when presented 
readings were far from the expected mean, parietal alpha and beta oscillations indicated conflict – when readings were near the category border. Our findings provide 
neural evidence that both conflict and surprise engage cognitive control to employ effort in decision making.   

1. Introduction 

We make countless decisions every day - some of which are easy 
while others are difficult. But what makes a decision difficult? It turns 
out that this is a complicated question entrenched in debate. Consider a 
clinician. Clinicians assess patient symptoms to develop diagnostic hy
potheses. A sore throat may indicate a cold, a flu, or the measles. Measles 
is uncommon and can often be disregarded, but cold and flu are both 
likely diagnoses and a clinician may be conflicted when deciding be
tween them. Likewise, clinicians are predisposed with expectations of 
what symptoms their patients may exhibit even prior to meeting them. 
Just by sheer statistics, clinicians may, for example, expect the average 
patient to arrive with a cough and a runny nose. When patients exhibit 
uncommon symptoms, however, the decision-making process becomes 
more complicated. 

We then return to the pressing question: what makes a decision 
difficult? Decision difficulty refers to judgments that require additional 
cognitive effort and two key factors contributing to the effort of a de
cision are conflict and surprise. On one hand, conflict occurs when two 
or more options are similarly likely (Botvinick and Cohen, 2014; Egner, 
2011, 2017; Nigg, 2017) – for example, when the clinician was first 
deliberating between a cold and a flu. To make a decision we consider 

different response options (e.g., diagnoses) each with a likelihood (or 
value) (Krajbich et al., 2010; Krajbich and Rangel, 2011; Tajima et al., 
2016) and typically choose the most likely option over less likely op
tions. However, if the likelihood for response options are similar it is 
difficult to choose between them and response conflict arises (Botvinick 
and Cohen, 2014; Egner, 2011, 2017; Nigg, 2017). On the other hand, 
we become surprised with unexpected events (Alexander and Brown, 
2011; Brown, 2013; Brown and Alexander, 2017; Vassena et al., 2020; 
Vassena et al., 2017a,b) – such as when a patient demonstrates rare 
symptoms. In other words, easy decision making can rely on intuitive 
heuristics (De Neys, 2017; Evans and Stanovich, 2013; Kahneman, 2011; 
Pennycook, 2017), but this strategy only functions as long as there is a 
clear response (i.e., no conflict) and everything subscribes to what is 
expected (i.e., nothing surprising). If conflict or surprise are present, 
intuitive decision systems are superseded by analytical decision systems 
that engage cognitive control (Evans and Stanovich, 2013; Kahneman, 
2011). 

Neural decision systems determine whether it is necessary to exert 
effortful top-down control (e.g., to resolve conflict or surprise) and, if so, 
direct the brain in doing so (Egner, 2017). One computational frame
work of decision making posits that determining whether to exert con
trol involves a cost-benefit assessment (Alexander and Brown, 2011; 
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Brown and Alexander, 2017; Kool et al., 2017; Kool and Botvinick, 2018; 
Shenhav et al., 2013; 2014; Vassena et al., 2020; Vassena et al., 2017a, 
b). Whereas cost refers to the expenditure of resources needed to make a 
difficult decision, benefit is the progress that would be achieved by 
exerting top-down influence. This model describes that if the benefit 
outweighs the cost, cognitive control and top-down bias is exerted, but if 
the cost outweighs the benefit, decisions are made without additional 
effort (Alexander and Brown, 2011; Brown and Alexander, 2017; Kool 
et al., 2017; Kool and Botvinick, 2018; Shenhav et al., 2013; 2014; 
Vassena et al., 2020; Vassena et al., 2017a,b). 

Within this cost-benefit framework, conflict operates as a cost of 
decision making – enforcing the need for increased incentives in fear of 
relying on faulty intuitions (Shenhav et al., 2014). Surprise signals, on 
the other hand, affect decision making in a nuanced way. As described 
by another computational framework of decision making (Alexander 
and Brown, 2011), humans have a pre-determined degree of effort 
which we expect to employ during decision making. If these predictions 
are mistaken, surprise signals index a discrepancy between our expected 
effort and the actual needed effort and we update our expectations for 
future decision making. 

In sum, computational accounts of decision making posit that con
flict signals may operate to resolve decision making in the moment 
(Shenhav et al., 2014) and surprise signals may function to reduce future 
difficulty (Alexander and Brown, 2011). With that said, rather than 
considering conflict and surprise in parallel, researchers have pitted 
them against each other in pursuit of a single account of effortful deci
sion making (Alexander and Brown, 2011; Brown and Alexander, 2017; 
Kool et al., 2017; Kool and Botvinick, 2018; Shenhav et al., 2013; 2014; 
Vassena et al., 2020; Vassena et al., 2017a,b). For example, during an 
investigation using fMRI, Vassena and colleagues (Alexander and Vas
sena, 2020; Vassena et al., 2020) discerned patterns of conflict and 
surprise through computational modelling wherein conflict was 
modelled using the Expected Value of Control (EVC) framework 
(Shenhav et al., 2013) and surprise was modelled as the Predicted 
Response Outcome (PRO) framework (Alexander and Brown, 2011). 
Their intent was to determine which of these frameworks independently 

explained neural patterns of effortful decision making. They concluded 
their neural data to fit the PRO model rather than the EVC model and 
thus effortful decision making to reflect surprising events rather than 
conflicting responses. Others have, however, re-interpreted their find
ings to have reflected a combination of conflict and surprise (Shenhav 
et al., 2020), indicating a need to further consider both mechanisms in 
parallel. 

In the current study, we examined whether conflict and surprise 
signals independently or concurrently influence control demands and 
the employment of effort in decision making. In other words, we 
investigated whether one of conflict or surprise guides effortful decision 
making alone or whether the two operate in parallel. Participants were 
to diagnose virtual patients with one of two diseases based on a physi
ological reading. Each disease was characterized by a unique range of 
the reading and task difficulty was manipulated as the distance between 
the presented reading and the category border that separated the two 
diseases (see Fig. 1). Thus, difficulty was highest near this border and 
decreased as readings diverged from it. 

Our analyses first focused on determining whether our task varied 
control demands, which would prompt the adjustment of decision 
making strategies via cognitive control (Jiang et al., 2015). The demand 
for control increases when there exists conflict between responses 
(Shenhav et al., 2013) – in our task the two diagnoses conflicted when 
the readings were near the category border (i.e., when difficulty was 
high). Moreover, demands change with changing contexts (Shenhav 
et al., 2013). In our task, these changes take the form of congruency 
sequence effects wherein changing demands across trials (incongruent 
trials, e.g., a conflict trial preceded by a no-conflict trial) elicit increased 
need for control than consistent demands across trials (congruent trials, 
e.g., a conflict trial preceded by a conflict trial) (Egner, 2007). In
dications of changing control demands correspond to decreased accu
racy rates and increased reaction times in the presence of conflict 
relative to no-conflict as well as in the presence of incongruent relative 
to congruent consecutive trials (Egner, 2007; Shenhav et al., 2013). 
Accordingly, we hypothesized that accuracy rates and reaction times 
would index changing demands in our task by adopting these patterns. 

Fig. 1. Depictions of disease ranges in the learning phase (a) and the decision making phase (b) and how they correspond to task difficulty (c). Category border 
signifies where the range of one disease ended and the other began. The double-sided arrow is a model where the brightness corresponds to the degree of difficulty. 
[Colour should be used for this figure]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Next, we considered whether neural components of decision making 
reflected conflict and/or surprise. Within our task, conflict was highest 
when the presented physiological reading was near the category border 
and decreased as a function of the distance from this border (see Fig. 1). 
Conflict was highest at the category border because these readings 
almost equally corresponded to each diagnosis and was lowest away 
from this border because one diagnosis was increasingly more likely 
than the other. Correspondingly, conflict was low at the lowest extreme 
of the disease 1 range, increased to a maximum at the category border, 
and then decreased back to low at the highest extreme of the disease 2 
range (see Fig. 1c). Statistically, this pattern of conflict could be 
described as a quadratic polynomial (see Fig. 2). 

In addition, as the physiological readings were determined randomly 
from a uniform distribution on each trial, the long-run average diffi
culty, and thus the most expected and least surprising readings, for the 
diagnoses would be within the center of each diagnostic range (see 
Fig. 1c). Surprise was lowest in the center of each range because par
ticipants learned to expect an average difficulty (or level of needed 
effort) of the task, and deviations from this expectations were unex
pected and surprising. Thus, surprise was lowest within the middle of 
each disease’s range and increased as the readings deviated from the 
center – i.e., towards the outer extremes and towards the category 
border. Statistically, this pattern of surprise could be described as a 
quartic polynomial (see Fig. 2). 

Here, we investigated oscillatory patterns in the brain corresponding 
to theta (3–8 Hz), alpha (8–14 Hz), and beta (14–20 Hz) rhythms while 
participants made decisions as modulations of these EEG rhythms have 
all been linked to the engagement of cognitive control (Cavanagh and 
Frank, 2014; De Loof et al., 2019; Lin et al., 2018; Williams et al., 2019). 
Although there has been neural evidence for both conflict and surprise 
signals within effortful decision making (Cavanagh and Frank, 2014), 
they are rarely dissociated and investigated concurrently (Lin et al., 
2018; Vassena et al., 2020). Our research here was exploratory thus we 
had no a priori hypothesis as to whether there would be individual or 
concurrent neural signals of conflict and surprise when making difficult, 
or else more effortful, decisions. Informally, however, in line with past 
research (Cavanagh et al., 2012; De Loof et al., 2019; Engel and Fries, 
2010; Lin et al., 2018; Williams et al., 2019) we predicted that theta 
would be positively associated with conflict and surprise and that alpha 
and beta would be negatively associated with conflict but not associated 
with surprise. 

2. Experimental methods 

2.1. Participants 

Thirty-three undergraduate students from the University of Victoria 
participated in the experiment. Three participants were removed due to 
excessively noisy frontal data leaving us with thirty participants (21.47 
years old [19.60, 23.33], 19 female, 10 male, 1 undisclosed). All par
ticipants had normal or corrected-to-normal vision and volunteered for 
extra course credit in a psychology course. Participants all provided 
informed consent approved by the Human Research Ethics Board at the 
University of Victoria. 

2.2. Experimental design 

Participants were seated in a sound dampened room, viewed stimuli 
on a 19” LCD computer monitor, and responded using a handheld 5-but
ton RESPONSEPixx controller (VPixx, Vision Science Solutions, Quebec, 
Canada). The task was written in MATLAB (version R2017b, Mathworks, 
Natick, U.S.A.) using the Psychophysics Toolbox extension (Version 
3.0.14; Brainard, 1997). 

Participants completed a simplified version of a decision making task 
used by Williams and colleagues (Williams et al., 2018; see also Ban
nister et al., 2016; Burak et al., 2015; Horrey et al., 2016; Kazoleas, 
2016; Tang et al., 2016). On each trial, they were presented with a 
simulated medical case including one physiological measure, Alkaline 
Phosphatase, and were to decide whether their virtual patient had 
general hepatocellular liver disease or cholestatic intrahepatic biliary 
disease (see Fig. 3). Here, we use the term ‘medical case’ to be consistent 
with the aforementioned research. Although the current cases contained 
a physiological reading that is pertinent in diagnosing these diseases in 
real-world settings, we would like to note that the simplicity of what is 
presented in this research does not adequately reflect the variety of in
formation used to diagnose real patients. Each disease had a unique 
range of readings (see Fig. 1a) and on each trial a reading for the current 
disease was randomly determined from a uniform distribution of the 
corresponding disease range. The ranges were each 115 values wide and 
were shifted by a random number between 0 and 654 so that no two 
participants conducted the task with the same readings. Further, the 
diseases to which each range were representative of were counter
balanced across participants. Although participants were informed that 
each disease was represented by a range of numbers, they were not told 

Fig. 2. Polynomials describing predictions of conflict (top orange line) and surprise (bottom orange line). The x-axis corresponds to task difficulty as depicted in 
Figure. [Colour should be used for this figure]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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the corresponding ranges, nor the range widths. 
On each trial, participants saw a white fixation cross on a dark grey 

background for 600–800 ms which was followed by a white number 
representing the physiological measure of the patient. With no time 
limit, they were to then select one of the two diseases by pressing the left 
or right button on the response box. Which button represented which 
disease was counterbalanced and at the beginning of each block par
ticipants were reminded which button corresponded to which disease. 
The experiment was separated into two phases: a learning phase and a 
decision making phase (see Fig. 3). In the learning phase participants 
would then see another white fixation cross for 500–800 ms which was 
followed by a 1 s presentation of a white ✓ or X indicating correct or 
incorrect, respectively. When participants achieved two consecutive 
blocks of twenty trials with an accuracy rate of 90% or higher, they 
moved into the decision making phase of the experiment. 

Within the decision making phase, no feedback was presented and 
participants saw both typical and rare medical cases. Specifically, the 
readings presented to participants varied as a function of whether they 
were from the same ranges as in the learning phase (typical cases) or 
from a new range that had not previously been learned (rare cases), see 
Fig. 1b. To avoid confusion, we want to emphasize that when using the 
terms typical and rare, we do not mean frequent and infrequent stimuli, 
but are rather using terminology that is coherent with the medical 
literature. The rare cases consisted of physiological readings that fell in 
between the two ranges that had been previously learned. Participants 
were told that this phase of the experiment was simply to practice what 
they had learned and were not told that the ranges of the diseases had 
been broadened nor that there would be unfamiliar cases. In this phase, 
participants completed ten blocks of twenty trials, half of which were 
typical cases and the other half rare cases. Although they were not 
presented feedback of their performance on each trial, they were 
informed of their performance after five blocks and at the end of the ten 
blocks. 

2.3. Data acquisition and processing 

Accuracy rates and reaction times were recorded using the response 
box. Behavioural responses were analyzed as markers of changing con
trol demands. First, the typical cases and rare cases were analogous to 
conflict. In line with categorization literature, there exists a category 
border wherein readings equally activate each response option (Ratcliff 
et al., 2016). Rare cases straddle this border, resulting in conflict be
tween the responses. In contrast, the typical cases encompass highly 

trained readings far from this border and result in no conflict. Thus, to 
confirm the manipulation of control demands in our paradigm, accuracy 
rates must decrease and reaction times increase for conflict relative to no 
conflict trials (Shenhav et al., 2013). Second, an additional marker of 
changing demands is the congruency sequence effect (Egner, 2007). 
Congruent trial types (i.e., typical – typical or rare – rare) result in higher 
accuracy rates and quicker reaction times than incongruent trial types (i. 
e., typical – rare or rare – typical). Thus, to further confirm changes of 
demand in our task would be to observe these behavioural patterns. 
Finally, we additionally analyzed these behavioural measures across 
task difficulty but describe these procedures below in section 2.4. Sta
tistical Analyses. 

EEG data were recorded from a 32 electrode EEG system (ActiCAP, 
Brain Products, GmbH, Munich, Germany) using Brain Vision Recorder 
(Version 1.10, Brain Products GmbH, Munich, Germany). Electrodes 
were all initially referenced to a common ground, impedances were on 
average kept below 20 kΩ, data were sampled at 500 Hz, and filtered 
using an antialiasing low-pass filter of 245 Hz through an ActiCHamp 
amplifier (Revision 2, Brain Products GmbH, Munich, Germany). To 
ensure precise temporal resolution, we synced EEG markers and stimuli 
through a DataPixx processing box (VPixx, Vision Science Solutions, 
Quebec, Canada). 

All EEG data were first processed in Brain Vision Analyzer (version 
2.1.2.327, Brain Products GmbH, Munich, Germany). Excessively noisy 
or damaged electrodes were removed, and data was down-sampled to 
250 Hz, re-referenced to an average mastoid, run through a dual-pass 
Butterworth filter (pass band: 0.1 Hz–30 Hz, 4th order), and a notch 
filter of 60 Hz. To identify and remove blink artifacts, data were put 
through a restricted infomax independent component analysis (ICA) 
with classic PCA sphering, components were visually identified by 
component head maps and related factor loadings, and artifacts were 
removed via an ICA back transformation. Electrodes that had initially 
been removed were then interpolated using spherical splines. 

All EEG data were then exported to a MATLAB format where the 
remainder of processing took place. Within MATLAB, data were 
segmented − 500 to 1500 ms centered on markers of interest. The 
markers of interest coincided with the onset of medical cases. Next, 
artifact rejection with absolute difference of 200 μV and/or 20 μV/ms 
gradient criteria was applied. We then conducted wavelet analyses on 
individual trial data (Gaussian-windowed complex sine wave with a 
Morlet parameter of 6 for frequencies 1 to 30 in 30 linear steps, no 
baseline was used; script can be found at www.github.com/neuro-tools; 
also see Cohen et al., 2008; Cohen, 2014), and standardized the data 

Fig. 3. Task paradigm demonstrating stimuli and timing for both the learning phase (orange) and the decision making phase (blue). [Colour should be used for this 
figure]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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within each participant. Standardization was completed for each elec
trode at each frequency within each participant by subtracting the mean 
of each frequency across conditions and dividing the output by the 
standard deviation of each frequency across conditions. 

Within the time-frequency wavelet data, we first determined clusters 
of interest using the collapsed localizer approach (Luck and Gaspelin, 
2017). This approach consists of averaging data across all conditions and 
identifying time-frequency clusters of interest. The frequency and 
time-width of these clusters were constrained to the contour lines of the 
plotted data (see Results). This approach resulted in two clusters of in
terest. The first cluster was at electrode FCz spanning frequencies 3–8 Hz 
within the time range of ~250–750 ms. Although this cluster’s fre
quency range is in line with the theta band, we here caution from using 
frequency band terminology as it may constrain our ability to interpret 
time-frequency analyses (Haller et al., 2018). Hereafter, we will simply 
refer to this cluster as the frontal cluster. The second cluster was 
maximal at electrode POz and spanned frequencies 7–20 Hz within the 
time range of ~350–650 ms. This frequency range corresponds to fre
quency bands alpha and beta. Hereafter, this cluster will be referred to as 
the parietal cluster. 

The task difficulty of each trial was then determined as the difference 
between the physiological reading presented and the category border, 
see Fig. 1c. This measure corresponded to response conflict wherein 
readings near the category border would indicate both diseases as likely 
diagnoses. As the readings moved away from this border, one response 
became increasingly more favourable than the other, reducing task 
difficulty. This resulted in a measure of task difficulty on a continuous 
scale which we then segmented into 21 bins. 

2.4. Statistical analysis 

All statistics were conducted in R (Version 4.0.0, the R Foundation, 
Vienna, Austria; R Team, 2016) using RStudio (Version 1.1.463, RStudio 
Inc., Boston, U.S.A.)(RStudio Team, 2016). All figures were created 
using the R package ggplot2 (Wickham, 2016) with the exception of the 
time-frequency wavelets and topographic maps which were created in 
MATLAB using EEGLab (Version, 2019; Delorme and Makeig, 2004). 

For accuracy rates and reaction times, conflict and congruency 
sequence effects were determined with two-tailed, repeated-measures t- 
tests (alpha = .05), 95% within-subject credible intervals (Nathoo et al., 
2018), and a Cohen’s d effect size. The assumption of normality was 
violated for both analyses of accuracy rates, and the assumption of ho
mogeneity of variance was violated for accuracy analyses of conflict. For 
consistency, all behavioural analyses were then conducted using a 
Welch’s t-test. 

Our manipulation of task difficulty provided opportunity to deter
mine whether behavioural data confirmed that our task involved 
changing control demands and whether neural signals reflected conflict 
and/or surprise. For the former, changes in demand would be confirmed 
as any relationship between behavioural measures and task difficulty. 
For the latter, whereas conflict signals would decrease proportionally to 
the distance from the category border, or in other words via a second 
order quadratic polynomial, surprise signals would increase with de
viations from the long-run average task difficulty, or else a fourth order 
quartic polynomial, see Fig. 2. For accuracy rates, reaction times, frontal 
oscillatory clusters, and parietal oscillatory clusters, then, we employed 
linear mixed-effects modelling techniques (lme4 package; Bates et al., 
2015); lmerTest package (Kuznetsova et al., 2017) to determine 
quadratic fits: 

Measure∼ β0 + β1Bin+ β2Bin2 +(1|Participant) + ε (1)  

and quartic fits: 

Measure∼ β0 + β1Bin+ β2Bin2 + β3Bin3 + β4Bin4 +(1|Participant) + ε (2)  

where Measure referred to accuracy, reaction time, frontal cluster 

activity, and parietal cluster activity and Bin referred to the binned task 
difficulty. To determine the fit of each model to neural data, we con
ducted a model comparison with a null model using chi-square differ
ence tests: 

Measure∼ β0 +(1|Participant) + ε (3) 

For behavioural data, we determined that the presence of a signifi
cant quadratic and/or quartic fit would confirm that these measures are 
sensitive to task difficulty and thus provide additional evidence that our 
task elicited changing control demands. For neural data, we compared 
the quadratic model to the quartic model using chi-square difference 
tests to determine whether they reflected conflict or surprise signals. 
Although quadratic and quartic polynomials were the focus of our 
neural analyses due to their description of conflict and surprise, 
respectively, we also conducted linear mixed-effects modelling investi
gating linear and cubic polynomial fits. One note is that alpha and beta 
activity, as encompassed within the parietal cluster, are negatively 
associated with cognitive control (De Loof et al., 2019; Engel and Fries, 
2010; Williams et al., 2019) – increased activity within the parietal 
cluster signifies reduced control. Correspondingly, the patterns reflected 
in Fig. 2 would then need to be interpreted inversely when considering 
the parietal cluster activity. 

2.5. Data and code availability 

In line with open science policies, all data and scripts (analysis, 
plotting, and statistics) used for this manuscript can be found at www. 
osf.io/a65sh/. 

3. Results 

3.1. Behavioural findings confirm the recruitment of cognitive control 

First, we sought to determine whether our paradigm engaged 
cognitive control in relation to changing control demands. Participants 
made a diagnostic decision between one of two diseases based on a 
physiological reading for a virtual patient. Each disease was character
ized by a specific value range for the physiological reading and thus we 
manipulated task difficulty by varying the distance to which the pre
sented readings was from the category border (see Fig. 1). This manip
ulation of task difficulty afforded us the ability to investigate both 
conflict and congruency sequence effects. Specifically, readings near the 
category border would elicit conflict between the two diagnostic re
sponses (conflict condition), and readings far from the border would not 
(non-conflict condition). Moreover, trials could be considered as 
congruent (e.g., conflict – conflict) or incongruent (e.g., non-conflict – 
conflict) depending on the demands of the preceding trial. 

Effects of accuracy rate and reaction time when manipulating both 
conflict and trial-to-trial congruency, confirmed the manipulation of 
control demands (see Fig. 4). Specifically with regard to conflict ma
nipulations, accuracy rates were greater in the non-conflict condition 
(97% [96%, 98%]) relative to the conflict condition (80% [77%, 84%]), 
Md = 17% [13%, 20%], t(29) = 7.94, p < .0001, d = 1.71 [1.03, 2.39]. 
Correspondingly, reaction times were quicker for the non-conflict con
dition (689 ms [646 ms, 733 ms]) relative to the conflict condition (783 
ms [725 ms, 841 ms]), Md = − 93 ms [-123 ms, − 63 ms], t(29) = − 5.31, 
p < .0001, d = − 0.51 [-0.71, − 0.30]. Similarly, accuracy rates were 
higher in congruent trials (90% [88%, 92%]) relative to incongruent 
trials (88% [85%, 90%]), Md = 2% [1%, 4%], t(29) = 2.73, p = .0105, d 
= 0.31 [0.08, 0.54]. Lastly, reaction times were quicker for congruent 
trials (716 ms [670 ms, 763 ms]) than for incongruent trials (755 ms 
[703 ms, 807 ms]), Md = − 39 ms [-58 ms, − 19 ms], t(29) = − 3.41, p =
.0019, d = − 0.23 [-0.37, − 0.09]. 

In addition to these analyses, we investigate accuracy rates and re
action times in a continuous manner using linear mixed-effects models. 
For these analyses the assumptions of linearity and homoskedasticity 
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were met; however, the assumption of normality of residuals was 
violated. As linear mixed-effects models are robust to violations of re
sidual normality (Winter 2013), no corrections were made. These ana
lyses present additional evidence that our task indeed elicited changing 
demands as demonstrated by both quadratic and quartic fits for accuracy 
rates (quadratic: AIC = 52,976, X2(2, n = 30) = 356.61, p < .0001; 
quartic: AIC = 52,753, X2(4, n = 30) = 583.97, p < .0001) and reaction 
times (quadratic: AIC = 81,304, X2(2, n = 30) = 109.13, p < .0001; 
quartic: AIC = 81,291, X2(4, n = 30) = 126.08, p < .0001), see Fig. 5. 

3.2. Frontal activity reflects surprise and parietal activity reflects conflict 

Our task affords us the opportunity to investigate task difficulty as a 
continuous function of the deviation between the readings and the 
category border with difficulty increasing as readings approached the 
border (see Fig. 1c). Conflict signals could then be considered continu
ously in proportion to task difficulty and surprise signals could be 
considered as deviations from average task difficulty. Recall that conflict 
is highest at the category border because these readings almost equally 
indicate both diagnoses and decreases as the readings deviate from this 
border. Also recall that the best predictor of each diagnosis is the mean 
of their corresponding range, thus these values are most certain to 
participants and deviations from each range’s center increases surprise. 
Statistically then, conflict would fit a quadratic pattern in the data while 
surprise would fit a quartic pattern (see Fig. 2). 

EEG time-frequency measures were fit to polynomials reflecting 
decision making model predictions using linear mixed-effect models. 
Specifically, frontal cluster power (reflective of theta band activity) and 
parietal cluster power (reflective of alpha and beta band activity) were 
identified (see Fig. 6) and fit to quadratic and quartic polynomials to 
determine their correspondence with conflict and surprise, respectively 
(see Fig. 7). The assumptions of linearity and homoskedasticity were met 
for all models, and the assumption of normality of residuals was violated 
for all models. As linear mixed-effects models are robust to violations of 

this latter assumption (Winter 2013), no corrections were made. 
Frontal power was best fit by the quartic polynomial (quadratic: AIC 

= 15,575, X2(2, n = 30) = 3.69, p = .1581; quartic: AIC = 15,568, X2(4, 
n = 30) = 14.71, p = .0053; quartic versus quadratic: ΔAIC = − 7.02, 
X2(2, n = 30) = 11.02, p = .0040). Parietal power was best fit by the 
quadratic polynomial (quadratic: AIC = 15,570, X2(2, n = 30) = 9.69, p 
= .0079; quartic: AIC = 15,574, X2(4, n = 30) = 9.91, p = .0420; quartic 
vs quadratic: ΔAIC = 3.78, X2(2, n = 30) = 0.22, p = .8939). We also 
provide a full complement of analyses comparing linear, quadratic, 
cubic, and quartic trends (1) to a null model and (2) to each other in 
Tables 1 and 2, respectively. Note that alpha and beta bands of the pa
rietal cluster activity are inversely related to cognitive control, thus 
higher scores indicate lower control. 

4. Discussion 

Research has struggled to parsimoniously describe the factors that 
lead to effortful decision making (Alexander and Brown, 2011; Brown 
and Alexander, 2017; Kool and Botvinick, 2018; Shenhav et al., 2013; 
2014; Vassena et al., 2020; Vassena et al., 2017a,b). Here, we had par
ticipants make diagnostic decisions based on a physiological reading of a 
series of virtual patients while we recorded EEG data. The proximity 
between the presented physiological reading and the category border 
served as a manipulation of task difficulty. Specifically, when the pre
sented reading was near the border that distinguished one diagnosis 
from the other, the likelihood of each diagnosis being correct was near 
equal and thus the decision was more difficult. In contrast, readings that 
were further from this border resulted in one diagnosis being more likely 
than the other thus making the decision easier. As such, our manipula
tion afforded us the ability to assess predictions of conflict and surprise 
in that conflict signals increased proportionally to task difficulty and 
surprise signals increased as a factor of deviation between the presented 
reading difficulty and the overall average task difficulty. 

First, we determined that our paradigm indeed manipulated control 

Fig. 4. Behavioural results reflect common findings of cognitive control – i.e., conflict effects (a and b) and congruency sequence effects (c and d). The behavioural 
effects confirm the recruitment of cognitive control within the task. [Colour should be used for this figure]. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Accuracy and reaction time reflect 
changing task difficulty. The x-axis corresponds 
to twenty-one bins of task difficulty as depicted 
in Fig. 1c, ranging from favour for disease one to 
favour for disease two. Each point corresponds to 
a mean with 95% within-subject credible in
tervals. Orange lines reflect quadratic poly
nomials. [Colour should be used for this figure]. 
(For interpretation of the references to colour in 
this figure legend, the reader is referred to the 
Web version of this article.)   
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demands and thus elicited effortful decision making by inspecting 
behavioural tendencies between the conflict and no-conflict conditions 
as well as between congruent and incongruent trials. Specifically, ac
curacy rates were lower and reaction times were higher for conflict trials 
relative to no-conflict trials, as well as, for incongruent trials relative to 
congruent trials. Changing control demands were additionally 
confirmed as accuracy rates and reaction times varied continuously 
across task difficulty. Next, we identified two oscillatory EEG patterns of 
interest: a frontal cluster of EEG activity within the theta range and a 
parietal cluster of EEG activity within the alpha and beta ranges. For 
each of these, we determined their reflection of conflict (as reflected by a 
quadratic polynomial) and surprise (as reflected by a quartic poly
nomial) via linear mixed-effects modelling. Frontal activity fit a quartic 
function rather than a quadratic function, indicating that it reflected 
signals of surprise rather than conflict. In contrast, parietal activity fit a 

quadratic function above a quartic function, determining that it re
flected signals of conflict rather than surprise. Thus, there existed a 
concurrent and dissociable account of conflict and surprise within 
effortful decision making. 

Our findings demonstrate that neither conflict nor surprise in 
themselves define what makes a decision difficult (i.e., more effortful). 
Further, they are neither able to independently account for the 
recruitment of cognitive control and the exertion of effort in decision 
making – indicating that cognitive control and effort are complex 
cognitive phenomena that are elicited by a range of factors. Both conflict 
and surprise need to be considered in parallel and with our findings we 

Fig. 6. Two clusters of interest at frontal 
(FCz) and parietal (POz) locations of the 
scalp. Standardized time-frequency wavelets 
correspond to data averaged across all trials. 
The frontal cluster reflects activity within 
the theta band (3–8 Hz) and the parietal 
cluster reflects activity within the alpha and 
beta bands (7–20 Hz). Black contour lines 
correspond to extracted regions for analysis. 
Topographic map values were extracted 
from time-frequency analyses in correspon
dence with the contour lines. Colour bars are 
in units of power (μV2). [Colour should be 

used for this figure]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)   

Fig. 7. Frontal cluster power (electrode FCz, 
frequencies 3–8 Hz) reflects surprise and parietal 
cluster power (electrode POz, frequencies 7–20 
Hz) reflects conflict. Standardized power for the 
frontal and parietal cluster were determined by 
the clusters of Fig. 6. The x-axis corresponds to 
twenty-one bins of task difficulty as depicted in 
Fig. 1c, ranging from favour for disease one to 
favour for disease two. Each point corresponds to 
a mean with 95% within-subject credible in
tervals. Orange lines are best fit polynomials. 
[Colour should be used for this figure]. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   

Table 1 
Model fits of linear, quadratic, cubic, and quartic trends for frontal and parietal 
neural clusters. Chi-squared and p-values correspond to model comparison results 
with a null model. AIC = Akaike Information Criterion, BIC = Bayesian Information 
Criterion.   

AIC BIC X2 p-value 

Frontal Cluster 

Linear 15,575 15,601 1.58 .2092 
Quadratic 15,575 15,608 3.69 .1581 
Cubic 15,576 15,616 3.87 .2759 
Quartic 15,568 15,614 14.71 .0053 
Parietal Cluster 
Linear 15,573 15,599 5.05 .0247 
Quadratic 15,570 15,603 9.69 .0079 
Cubic 15,572 15,612 9.74 .0209 
Quartic 15,574 15,620 9.91 .0420  

Table 2 
Model fits differences and statistical results when comparing across linear, quadratic, 
cubic, and quartic trends for accuracy, reaction time, the frontal neural cluster, and 
the parietal neural clusters. AIC = Akaike Information Criterion, BIC = Bayesian 
Information Criterion.   

ΔAIC ΔBIC X2 p-value 

Frontal Cluster 

Linear vs Quadratic 0 − 7 2.11 .1461 
Linear vs Cubic − 1 − 15 2.29 .3178 
Linear vs Quartic 7 − 13 13.13 .0044 
Quadratic vs Cubic − 1 − 8 0.18 .6710 
Quadratic vs Quartic 7 − 6 11.02 .0040 
Cubic vs Quartic 8 2 10.84 .0010 
Parietal Cluster 
Linear vs Quadratic 3 − 4 4.64 .0312 
Linear vs Cubic 1 − 13 4.69 .0957 
Linear vs Quartic − 1 − 21 4.87 .1820 
Quadratic vs Cubic − 2 − 9 0.05 .8186 
Quadratic vs Quartic − 4 − 17 0.22 .8939 
Cubic vs Quartic − 2 − 8 0.17 .6785  

C.C. Williams et al.                                                                                                                                                                                                                             



Neuropsychologia 155 (2021) 107793

8

now have dissociated neural indicators of each. 
Thus, we add to the neural evidence of concurrent contributing 

factors of cognitive control and effortful decision making. For example, 
Lin et al. (2018) demonstrated both conflict and surprise signals in de
cision making. In their task, participants decided between an immediate 
reward and a delayed reward and task difficulty was manipulated as the 
subjective difference between the immediate and delayed reward mag
nitudes. They found that theta activity was highest when the subjective 
rewards of the options were similar (i.e., conflict was highest) and 
decreased with the degree to which the options diverged (i.e., 
decreasing conflict). They also presented participants with a small 
subset of surprising trials – i.e., no-brainer trials – which were designed 
so that the immediate reward was undoubtedly better than the delayed 
reward. They found heightened theta activity with no-brainer trials. As 
these trials were much easier than what the participants were used to, 
they concluded that theta was also indicative of surprise. As theta ac
tivity varied proportionally to conflict and was large to unexpected 
no-brainer trials, Lin and colleagues’ (2018) findings demonstrate con
current neural signals of conflict and surprise. 

Our findings extend the work of Lin and colleagues by analyzing both 
conflict and surprise on a continuous scale – demonstrating patterns of 
both of these signals across task difficulty. With that said, one discrep
ancy between our findings and those of Lin et al. (2018) is that our 
frontal EEG activity exclusively reflected a surprise signal whereas Lin 
and colleagues’ found that frontal theta reflected both conflict and 
surprise. These deviations, however, may simply be due to the different 
task demands between studies – Lin et al. (2018) manipulated task dif
ficulty as the relative subjective value of the immediate and delayed 
rewards and we manipulated task difficulty as the relative likelihood of 
each diagnosis. 

In addition to our current findings and those of Lin et al. (2018), 
Vassena et al. (2020) determined concurrent patterns of surprise and 
conflict while measuring brain activity via fMRI imaging. In their 
research, participants were to select one of two pairs of stimuli, each 
indicating a reward magnitude. Vassena and colleagues manipulated 
task difficulty, and thus conflict, as the discrepancy between the two 
option values wherein difficulty and conflict was highest when the 
magnitudes were similar. In addition, they signified that participants 
developed an expectation of presented rewards as the long-run averaged 
reward across trials and thus determined surprise to increase as values 
diverged from this expectation. They found that activity within the 
dorsal anterior cingulate cortex corresponded to surprise signals and 
activity within the ventral medial prefrontal cortex reflected control 
signals (similar to conflict in our findings). Curiously, despite finding the 
presence of both conflict-like and surprise signals, Vassena et al. (2020) 
concluded surprise as the sole contributor to the recruitment of cognitive 
control – a conclusion criticized by others who posited their findings to 
provide evidence for both conflict and surprise in effortful decision 
making (Shenhav et al., 2020). 

Together, our findings with those of Lin (2018), Vassena (2020), and 
their colleagues demonstrate dissociable and concurrent signals of 
conflict and surprise during effortful decision making. Although it is 
beyond the scope of the current manuscript, different computational 
models, such as the Expected Value of Control (EVC; Grahek et al., 2020; 
Musslick et al., 2017; Shenhav et al., 2013) and the Predicted Response 
Outcome (PRO; Alexander and Brown, 2011; Brown and Alexander, 
2017; Vassena et al., 2020), may afford an explanation as to how our 
findings of dissociable conflict and surprise signals may affect decision 
making through the engagement of cognitive control and the employ
ment of effort (Alexander and Brown, 2011; Shenhav et al., 2013). The 
EVC model posits that expected benefits and costs are utilized to 
determine whether to initiate cognitive control and the degree of effort 
to be enforced (Kool et al., 2017; Kool and Botvinick, 2018; Shenhav 
et al., 2013, 2016, 2020). Thus, control costs (e.g., to resolve conflict) as 
determined by this model explicitly function to influence action selec
tion. Concurrently, the PRO model tracks expectations and determines 

alignment with the environment (Alexander and Brown, 2011; Brown 
and Alexander, 2017; Vassena et al., 2020; Vassena et al., 2017a,b). If 
discrepancies exist (a surprising event), control is initiated with the 
function of updating expectations to reduce future difficulty. Thus, 
conflict signals may recruit cognitive control to reactively address im
mediate action selection, while surprise signals may recruit cognitive 
control to proactively account for environmental demands via 
context-updating. 

In conclusion, here we demonstrate dissociable and concurrent sig
nals of conflict and surprise, indicating that neither alone could explain 
the complexities of effortful decision making. Our findings indicate the 
complexity of recruiting factors and functions of cognitive control. 
Specifically, conflict may recruit cognitive control for action selection 
and surprise may recruit cognitive control to update expectations. We 
posit that future research may benefit by considering these signals as 
simultaneous contributors for the recruitment of cognitive control and 
the employment of effort in decision making as opposed to debating 
which of them should be considered as the lone contributor. 
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