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1  |   INTRODUCTION

1.1  |  Electroencephalographic measures of 
feedback processing

The initial examination of the electroencephalographic 
(EEG) correlates of feedback processing began with work 
by Falkenstein and colleagues (1991) and concurrently 
by Gehring and colleagues (1990, 1993). They reported 

a negative deflection in the human electroencephalogram 
evoked by errors committed during the performance of a 
speeded response task—an event-related potential (ERP) 
component now named the error-related negativity (ERN). 
Based on these data, the authors concluded that the ERN re-
flected the online monitoring of one's performance.

Following from this seminal work, studies began to ex-
amine feedback processing—the adaptation of behavior 
from external feedback. The ERP correlates of feedback 
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Abstract
Human learning, at least in part, appears to be dependent on the evaluation of how 
outcomes of our actions align with our expectations. Over the past 23 years, electro-
encephalography (EEG) has been used to probe the neural signatures of feedback 
processing. Seminal work demonstrated a difference in the human event-related 
potential (ERP) dependent on whether people were processing correct or incor-
rect feedback. Since then, these feedback evoked ERPs have been associated with 
reinforcement learning and conflict monitoring, tied to subsequent behavioral ad-
aptations, and shown to be sensitive to a wide range of factors (e.g., Parkinson's 
disease). Recently, research has turned to frequency decomposition techniques to 
examine how changes in the EEG power spectra are related to underlying learning 
mechanisms. Although the literature on the neural correlates of feedback processing 
is vast, there are still methodological discrepancies and differences in results across 
studies. Here, we provide reference results and an investigation of methodological 
considerations for the ERP (reward positivity) and frequency (delta and theta power) 
correlates of feedback evaluation with a large sample size. Specifically, participants 
(n = 500) performed a two-armed bandit task while we recorded EEG. Our findings 
provide key information about the data characteristics and relationships that exist be-
tween the neural signatures of feedback evaluation. Additionally, we conclude with 
selected methodological recommendations for standardization of future research. All 
data and scripts are freely provided to facilitate open science.
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processing were first reported by Miltner et al. (1997) who 
found a frontal component differentially sensitive to posi-
tive and negative feedback—a component that was eventu-
ally named the feedback-related negativity (FRN)1. They 
concluded that this “new” component was the feedback 
evoked version of the aforementioned ERN and reflected a 
generic neural system for performance evaluation and 
learning.

An abundance of later work suggested that the 
FRN should be more aptly named the reward positiv-
ity. Specifically, the initial supposition made by Miltner 
et al. (1997) was that the FRN reflected modulation of the 
incorrect (or negative) outcome ERP waveform. However, 
subsequent work instead demonstrated that the difference 
in the FRN time range appeared to be driven by a modula-
tion of the correct (or positive) outcome waveform and was 
thus renamed the reward positivity (Holroyd et al., 2008; 
Proudfit, 2015).

The functional significance of the reward positivity2 (or 
FRN), however, is still a matter of debate. Early interpreta-
tions of the reward positivity were divided between conflict 
monitoring and reinforcement learning accounts (although 
see Holroyd & Yeung, 2012, and Holroyd & McClure, 2015). 
The conflict monitoring account proposed by Botvinick 
and colleagues (e.g., Botvinick et al., 2004) posited that the 
reward positivity (and the ERN) were sensitive to the pro-
cessing of conflict as the brain decides whether or not top-
down control is required. Conflict may arise, for example, 
when responses in a given task compete with each other. 
Response conflict can be seen in frontal-central neural sig-
nals such as the reward positivity, which is modulated by 
the extent of top-down influence that is required by a given 
response.

An alternate theoretical account of the reward positivity 
proposes that it reflects a reinforcement learning prediction 
error—the computational difference between one's expec-
tations of an outcome and the actual outcome (Holroyd & 
Coles, 2002). Specifically, if a discrepancy between an ex-
pectation and outcome exists, the signal generated by this 
computation is used to update representations and adapt sub-
sequent behavior (Holroyd & Krigolson, 2007; Luft,  2014; 
Walsh & Anderson, 2012; Williams et al., 2020). Although 
changes in the amplitude of the reward positivity were orig-
inally theorized to reflect a neural signal that outcomes are 
worse-than-expected (e.g., a reward was smaller than ex-
pected; Holroyd & Coles, 2002; Miltner et al., 1997), rein-
forcement learning accounts have been modified to propose 

that the signal is observed when outcomes are better-than-ex-
pected (e.g., a reward was bigger than expected; Foti 
et al., 2011; Holroyd et al., 2008; Krigolson, 2018; Krigolson 
et al., 2014; Proudfit, 2015).

More recent developments, however, have led to several 
additional theories including ones that propose that the re-
ward positivity reflects independent aspects of both the pro-
cessing of better-than-expected and worse-than-expected 
outcomes—propositions derived from the use of frequency 
decomposition methods as opposed to the ERP technique 
(Bernat et al., 2008, 2011, 2015; Foti et al., 2015). The initial 
reason for turning to frequency decomposition techniques to 
examine the reward positivity was primarily due to its tempo-
ral overlap with the P300 (Bernat et al., 2008, 2011, 2015), a 
component that has also been shown to play a role in feedback 
processing (Yeung & Sanfey, 2004). Using frequency decom-
position techniques, Bernat and colleagues (2011, 2015) con-
cluded that changes in the amplitude of the reward positivity 
were associated with changes in theta power and were driven 
by loss feedback, whereas changes in the amplitude of the 
P300 were associated with changes in delta power and were 
driven by gain feedback. These findings demonstrated a dis-
sociation of overlapping feedback processing ERP compo-
nents and the independent processing of better-than-expected 
and worse-than-expected events.

Adopting this perspective would mean that the “reward 
positivity” naming convention is misleading and may bias in-
terpretations of findings as only reflective of gain feedback 
processing. Although we will not here contrast this perspec-
tive with the conceptual framework of the reward positivity, 
it may be necessary to be cautious when reading this article 
by remembering that the reward positivity may be thought of 
as an ERP component reflecting both gain and loss feedback 
processing.

1.2  |  Methodological considerations of 
neural feedback processing

To date, Sambrook and Goslin (2015) provide the most rigor-
ous look at methodological considerations and differences in 
results for the reward positivity in a meta-analysis. 
Specifically, they included 55 data t-sets that investigated the 
effects of valence, reward magnitude, and reward likelihood 
on the ERP correlates of feedback processing. Interestingly, 
the amplitude of the reward positivity across these studies 
was strikingly variable. For example, when investigating the 
effects of likelihood, grand averaged amplitudes ranged from 
~−0.60 to ~+4.75  μV3. The inconsistency of amplitudes  1It is important to note that the FRN has also been called the feedback 

negativity (FN), the medial frontal negativity (MFN), the feedback ERN 
(fERN), and more recently the RewP or reward positivity.

 2For the remainder of this manuscript we will solely use the term reward 
positivity.

 3Sambrook and Goslin (2015) measured a feedback related negativity thus 
actually found a range of ~–4.75 μV to ~+0.60 μV, however, we flipped 
the polarity to be consistent with the reward positivity. These values are 
approximated via visual inspection of their Figure 5.
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across studies is rarely addressed and often construed as 
noise derived by the EEG method. In reality, much of this 
variation is caused by the unstandardized practices of quanti-
fying the amplitude of the reward positivity and also inde-
pendent variables that have an impact on component 
amplitude but are not examined.

There are three main methods to quantify an ERP com-
ponent: base-to-peak, maximum peak, and mean peak 
(Luck, 2014). For the reward positivity, base-to-peak refers 
to measuring a difference between the P200 component (a 
component that precedes the reward positivity) and the N200 
component (a component that is modulated to elicit the re-
ward positivity). A maximum peak instead determines the 
maximal amplitude of the reward positivity peak within a 
designated time window. A mean peak reflects the mean volt-
age within a window surrounding the maximal amplitude of 
the reward positivity peak. It is evident that no consensus on 
which method to use exists as Sambrook and Goslin (2015) 
found nearly equal occurrences of each method across the 
studies included in their meta-analysis.

The lack of consensus with regard to peak detection is 
surprising given that researchers have previously described 
the limitations of base-to-peak and maximum peak measures 
(Luck,  2014; Luck & Gaspelin,  2017; Picton et  al.,  2000). 
Specifically, the base-to-peak method measures the peak of 
interest against the preceding peak and thus actually measures 
the difference between the two (Picton et  al.,  2000). If the 
preceding peak is also affected by the experimental manipu-
lation, then this method does not adequately capture the com-
ponent of interest. Alternatively, the maximum peak method 
is susceptible to noise (e.g., unrelated biological and environ-
mental noise), which artificially inflates effects (Luck, 2014; 
Luck & Gaspelin,  2017). Neither of these methods should 
then be common in the literature, yet they are. The mean 
peak, in contrast, is less susceptible to confounding effects of 
other peaks and noise (Luck, 2014; Luck & Gaspelin, 2017). 
Here, we pit these three peak quantification methods— 
base-to-peak, maximum peak, and mean peak—against each 
other to provide a firm statement about the superiority of the 
mean peak method and resolve this source of variability in 
ERP research. Unfortunately, even confirming the superi-
ority of mean peak measures over the other peak methods 
does not remove all sources of variation across research. For 
example, the time window used for peak detection has also 
been demonstrated to impact peak quantification (Sambrook 
& Goslin, 2015).

When measuring the reward positivity, it is also essential 
to adequately capture the peak of the component. Thus, per-
haps some variability around component timing is warranted, 
but not to the degree as seen in past studies. For example, 
measuring the reward positivity amplitude ranges from using 
a 200–250 ms time window to a 240–400 ms time window 
(Sambrook & Goslin, 2015). Not only do some of these time 

windows not overlap at all, but the size of the windows vary 
from 50 to 160 ms. Fortunately, Sambrook and Goslin (2015) 
do put forth a potential window timing of 270 to 300 ms but 
caution that the variability across studies may rather warrant 
a time window of 240 to 340  ms. Although a good guide, 
their caution demonstrates that there is still no consensus on 
the time window that should be used to quantify the reward 
positivity.

A potential cause for inconsistencies in both the ampli-
tudes and the time windows of reward positivity analyses 
may be due to variability in component scalp topography or, 
more precisely, the electrode site of investigation. Again con-
sidering those studies included within Sambrook and Goslin 
(2015), three electrode sites were used when investigating the 
reward positivity: FCz, Cz, and Fz (or a pool of these and 
other electrodes). For those familiar with the literature of the 
reward positivity, it is not surprising that electrode site FCz 
is the most commonly used. It has not become the standard, 
however, as is demonstrated by the frequent use of other elec-
trode sites. With that said, these three electrode sites are all 
proximal and thus there is some agreement as to where the 
reward positivity peaks topographically. Yet, to ensure that 
the methodology of research going forth is consistent, it is 
still necessary to reach a consensus on which electrode site 
to analyze.

One final point to note, although not a main focus of this 
article, is whether to measure conditional waveforms (gain 
and loss) or the difference waveform (gain-loss). Especially 
with the reward positivity, a common practice is to measure 
the difference waveform but this is far from convention. 
Indeed, some of the discrepancies in reported results may 
rise as there are certain cases where measuring individual 
waveforms are more telling or appropriate than measuring 
the difference waveform. For example, when considering the 
learning effects of the reward positivity, research has focused 
solely on the gain waveform (Krigolson et al., 2014; Williams 
et al., 2020, 2018). With that said, Luck (2014) proposed that 
difference waveforms are more informative than individual 
conditional waveforms. In line with Luck, we will focus our 
discussion on difference waveform findings, but to be thor-
ough we still provide results for conditional waveforms as 
well.

1.3  |  Methods of measuring neural 
feedback processing

There exists a variety of methods for assessing neural activity 
with EEG—in this manuscript, to ensure a full complement 
of analyses, we will consider ERP, fast Fourier transforms 
(FFT), and time–frequency transforms. ERP methods ex-
tract neural activity by observing the peaks and troughs of 
averaged EEG signals time-locked to events of interests  
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(see Luck, 2014 for more). FFT and time–frequency analy-
ses rather dissect these EEG signals into underlying brain 
oscillations, which are used for analysis. Whereas FFT anal-
yses extract frequency activity collapsed across time, time– 
frequency analyses extract frequency activity extended over 
time (see Cohen, 2014 for more).

ERP methods have long been the staple in EEG research 
and have been the vehicle for significant discoveries and 
achievements. The original widespread adoption of ERP 
methods over frequency analyses was, in part, because they 
were intuitive and easy to conduct (especially as EEG was 
discovered before computers; Luck,  2014). Now, however, 
a multitude of toolboxes and tutorials have made frequency 
analyses easy and accessible (e.g., Cohen, 2014). The rise in 
adopting frequency analyses over ERP methods was driven, 
in part, by their ability to disentangle underlying cognitive 
components that are confounded within ERP research (e.g., 
Bernat et  al.,  2008). There are different approaches to fre-
quency analyses, and deciding between FFTs and time– 
frequency analyses, for example, involves whether research-
ers are regarding the timing of oscillations. Whereas FFT 
methods ignore the dimension of time, time–frequency anal-
yses do not.

The removal of time as a factor has two advantages: first, it 
reduces researchers’ degrees of freedom in that the timing of 
oscillations do not need to be decided, and second, it is com-
putationally faster. The former allows for easier standardiza-
tion across research, while the latter allows for more diverse 
applicability of research—for example, with real-time moni-
toring of brain activity. With an interest in component timing, 
however, researchers may adopt time–frequency analyses or 
short-time Fourier transforms (the application of FFTs with 
sliding time windows)—methods that have been shown as 
equivalent when parameters are equal (Bruns, 2004). Thus, 
either frequency decomposition technique may be appro-
priate depending on the research design and goals of the re-
searcher. Here, we conduct ERP, FFT, and time–frequency 
analyses to assess the activity of neural learning systems.

1.4  |  Current study

The study of neural signals associated with feedback process-
ing is of interest across theoretical, applied, and clinical neu-
roscience; thus it is important to define their characteristics. 
Here, we (1) determine normative neural data of feedback 
processing using a large sample in a single task, (2) compare 
different EEG processing methods (ERP, FFT, and time– 
frequency), and (3) assess selected methodological stand-
ards. Although researchers know that the neural signals as-
sociated with feedback evaluation (i.e., the reward positivity, 
delta power, and theta power) are not present in everyone, 
to what extent is this true? Here, we seek to answer this key 

question. Indeed, normative data facilitate research, the un-
derstanding of individual differences, and the assessment of 
clinical populations (Hill et al., 2018; Mitrushina et al., 2005; 
Zimmerman,  2011). Understand normative scores in these 
neural components can lead to better interpretation of our 
findings and aid in designing future research. Large sample 
studies afford us the knowledge to properly understand and 
interpret the variability we see in our data—mitigating the 
biased assumption that uncharacteristic scores reflect noise. 
Furthermore, describing normative patterns in our data can 
inform the interpretation of individual factors of learning 
across contexts and populations (Hill et  al.,  2018), and the 
assessment of clinical populations via biomarkers—for ex-
ample, Proudfit (2015) has described that neural measures of 
feedback processing can gage depression. Understanding and 
interpreting data, however, moves beyond simply describ-
ing it. There exists a variety of methods for processing EEG 
data, each with advantages and disadvantages but none with 
standardized methods. Here, we (1) present normative data 
of ERP, FFT, and time–frequency methods, (2) contrast EEG 
analysis methods to determine how they relate, and (3) con-
clude with selected methodological considerations.

In sum, we sought to provide an accurate definition of 
the reward positivity and related frequency components 
(delta and theta power) based on a large sample size of par-
ticipants (n = 500) performing the same experimental task. 
We chose to use a two-armed bandit task as it is the most 
commonly used paradigm to evoke the reward positivity 
and has been demonstrated to have clinical relevance (e.g., 
Proudfit, 2015). Moreover, this article focuses on the descrip-
tive measures of the reward positivity, delta power, and theta 
power, on recommendations for standardized practices, and 
on comparisons across processing methods, rather than the-
oretical interpretations of our findings. For theoretical inter-
pretations of the reward positivity, we would point readers 
to a recent journal special edition on reward and feedback 
processing (Foti & Weinberg, 2018) and a series of review 
articles (Proudfit,  2015; Sambrook & Goslin,  2015; Walsh 
& Anderson,  2012). For theoretical interpretations of delta 
power and theta power in feedback processing, see Bernat 
et al. (2015) and Sambrook and Goslin (2016).

2  |   TASK AND DESIGN

2.1  |  Task

Participants were seated in front of a 19″ LCD com-
puter monitor in a sound dampened, dark room. They 
responded to the task (originally written in MATLAB ver-
sion R2016a using Psychophysics Toolbox extension 
version 3.0.12; Brainard,  1997) using either a 5-button 
handheld RESPONSEPixx controller or a dual handheld 
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RESPONSEPixx controller (VPixx, Vision Science Solutions, 
Quebec, Canada).

Participants completed a simple gambling task. On each 
trial, they saw a black fixation cross for 500 ms, followed by 
two colored squares for 500 ms, and then, the fixation cross 
turned gray (go cue) and participants were to select one of 
the two squares (square locations—left, right—were random-
ized on each trial) within a 2,000 ms time limit. They were 
then presented with a black fixation cross for 300 to 500 ms, 
and then, simple feedback as to their performance (“WIN” 
for gain, “LOSE” for loss) for 1,000 ms in black font. If the 
participants responded before the go cue they were instead 
delivered “TOO FAST” feedback and if they did not respond 
before the 2,000 ms time limit, it would be considered a loss. 
The goal of the participants was to accumulate wins by de-
termining which of the two squares would more often lead to 
gains (60% vs. 10%). In this task, participants accumulated 
wins; however, were not paid money. They would see the 
same pair of colors for one block of 20 trials. They conducted 
six blocks of unique color pairs.

Within this task, we found that responses were correct 
75% [73%, 76%] of the time which, due to the probabilistic 
nature of the feedback, resulted in 47% [46%, 48%] gain feed-
back4. Correct responses (383  ms [372, 394  ms]) were  
statistically quicker than incorrect responses (406  ms  
[393, 418 ms]), Md = −23 ms [−30, −15 ms], t(499) = 5.84, 
p < .0001, d = −0.26.

2.2  |  Participants

Five hundred undergraduate students (Age: 490 responses, 
M = 21.71 years old [21.24 years old, 22.18 years old]; Gender: 
495 responses, Female = 341, Male = 154; Handedness: 492 
responses, Right Handed = 440, Left Handed = 52) were in-
cluded within the analyses of this manuscript and were re-
cruited via the University of Victoria psychology participant 
pool. In addition, birthplace as self-reported by participants 
were collected beginning mid-way through data collec-
tion (221 Responses: Canada: 170, China: 11, USA: 7, and 
the following had 1 to 4 participants each: Bolivia, Brazil, 
Columbia, England, Europe, Iran, Israel, Japan, Malaysia, 
Mexico, Morocco, New Zealand, Philippines, Russia, Saudi 
Arabia, Scotland, South Africa, South Korea, Taiwan, and 
United Arab Emirates). To accurately capture the neural cor-
relates of feedback processing, we used higher standards than 
we normally would to ensure data quality. Thus, we collected 
data until we had 500 participants that were not character-
ized by one of the following a priori criteria: trial counts 

after artifact rejection were less than 15 per condition, total 
artifact rejection exceeded 40% of trials rejected, FCz (elec-
trode of interest) specific artifact rejection exceeded 40% 
of trials rejected, or independent component analysis based 
blink correction failed. These criteria were extremely strict 
to ensure we included clean data in our analyses, and as such 
we analyzed a total of 637 participants before reaching our 
goal of 500 clean participants. All participants had normal 
or corrected-to-normal vision and volunteered to take part in 
the experiment for extra course credit in a psychology course. 
All participants provided informed consent approved by the 
University of Victoria's Human Research Ethics Board.

2.3  |  Data and script availability

In line with open science policies, all data and scripts (pro-
cessing, analysis, plotting, and statistics) used for this manu-
script can be found at www.osf.io/65x4v/.

3  |   EVENT-RELATED 
POTENTIALS

3.1  |  Data acquisition, processing, and 
analyses

EEG data were recorded from either a 64 or 32 electrode 
(Ag/AgCl) EEG system (ActiCAP, Brain Products, GmbH, 
Munich, Germany) using Brain Vision Recorder (Version 
1.21.0004, Brain Products GmbH, Munich, Germany). 
During recording, electrodes were referenced to a common 
ground, impedances were kept below 20 kΩ on average, data 
were sampled at 500 Hz, and an antialiasing low-pass filter of 
245 Hz was applied via an ActiCHamp amplifier (Revision 2, 
Brain Products GmbH, Munich, Germany). Stimuli and EEG 
markers were temporally synced using a DataPixx stimu-
lus synchronization unit (VPixx, Vision Science Solutions, 
Quebec, Canada).

All EEG data were processed in MATLAB using custom  
code (specifically, the following packages: MATLAB-EEG- 
fileIO, MATLAB-EEG-preProcessing, MATLAB-EEG- 
icaTools, MATLAB-EEG-time–Frequency Analysis; refer-
ence to all code can be found at www.github.com/Neuro​- 
Tools). Many functions in these packages have dependencies 
on EEGLAB (Delorme & Makeig, 2004). First, any partici-
pant data that were collected with a 64 electrode EEG sys-
tem was reduced to a 32 electrode system according to 
Figure 1. Data were processed twice wherein the first pass 
was used to identify noisy or damaged electrodes, and the 
second pass was to process data for analysis. Data were 
re-referenced to an average mastoid reference and filtered 
using a 0.1 to 30 Hz passband (Butterworth, order 4) and a 

 4Correct and incorrect correspond to whether participants selected the 
higher valued stimulus while gain and loss correspond to the presented 
feedback stimulus.

http://www.osf.io/65x4v/
http://www.github.com/Neuro-Tools
http://www.github.com/Neuro-Tools
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60  Hz notch filter. To correct eye blinks, data were run 
through EEGLAB’s independent component analysis (ICA), 
components reflective of blinks were manually identified via 
topographic maps and component loadings, and data were 
reconstructed without components reflective of eye blinks. 
Data were then segmented from −500 to 1,500 ms relative to 
feedback stimulus onset, baseline corrected using a −200 to 
0 ms window, and run through artifact rejection with 10 μV/
ms gradient and 100  μV maximum–minimum criteria. 
Artifact rejection trial removal rates for each electrode were 
used to determine noisy or damaged electrodes in that any 
electrode with a trial rejection rate greater than 40% were 
tagged for removal. The second pass consisted of the same 
procedures with the addition of initially removing electrodes 
identified as noisy or damaged and interpolating them using 
the spherical spline method after the ICA back transforma-
tion was implemented. Additionally, we here used a segment 
window of −500 to 1,300 ms for artifact rejection, and then, 
trimmed it to −200 to 1,000 ms for the ERP analysis. Final 
data had a trial rejection rate due to artifact rejection criteria 
of 19% [SD: 13%]5.

Data were processed to result in event-related potentials 
(ERPs). Specifically, each condition (gain and loss) within 
each participant were averaged to create conditional wave-
forms. Difference ERPs were created as the gain condition 
minus the loss condition. Grand average ERPs were created 
for each condition (gain and loss) and the difference (gain–
loss) by averaging across participants.

All analyses were conducted at electrode site FCz; how-
ever, parallel analyses at electrode site Cz can be found 

in Appendix A of Supporting Information. First, the peak 
time of the reward positivity was determined by finding 
the peak amplitude of the entire difference waveform for 
each participant. We used three methods to then extract 
reward positivity amplitudes: mean peak, maximum peak, 
and base-to-peak. For the mean peak, we averaged the volt-
ages surrounding the peak location for each participant. 
As there is no standardized window size, we examined a 
series of widths, from 1 to 500 ms, and found the inflec-
tion point of the resulting curve to be at a width of ±46 ms 
surrounding the peak (see 3.2. ERP Results). Thus, we 
averaged data within this window for each participant. To 
extract the maximum peak, we identified the largest ampli-
tude within the 200 to 400 ms time window, as this win-
dow size is most common from past research (Sambrook 
& Goslin,  2015). To extract the base-to-peak measures, 
we extracted the minimum voltage of the trough immedi-
ately prior to the reward positivity (i.e., the P200; within 
150–250 ms from feedback stimulus onset) and subtracted 
it from the maximum peak measure. For each measure 
(mean, maximum, and base-to-peak), descriptive statistics 
(i.e., mean and standard deviation) and estimation statistics 
(i.e., 95% confidence intervals and Cohen's d) were com-
puted and reported. Although null-hypothesis significance 
testing statistics are not here provided, all repeated-mea-
sures t tests comparing gain from loss conditions across all 
measures can be computed with the statistics provided (this 
statement additionally applies to Fast Fourier Transform 
and time–frequency analyses).

We also examined the number of participants who had a 
reversed, or flipped, reward positivity. Specifically, although 
we would expect a positive amplitude when measuring the 
reward positivity, this was not the case for all participants. 
The amplitude of the reward positivity was negative for some 
participants. Correspondingly, we computed the percentage 
of participants with a negative deflecting reward positivity 
and additionally analyzed them separately from those with a 
typical reward positivity. Finally, we computed sample size 
requirements to detect the reward positivity for desired power 
of 80%, 85%, 90%, 95%, and 99% using the “pwr” R package 
(Champely, 2018).

3.2  |  ERP results

Feedback stimuli elicited a reward positivity with a large 
effect size when using a mean peak measure, a maximum 
peak measure, and a base-to-peak measure, see Table  1 
and Figures 2 and 3. Additionally, we provide both mean 
and maximum amplitude scores with different window 
sizes when considering both the reward positivity peak 
and baseline activity (see Figure 4). The reward positivity 
peaked at a latency of 310 ms [SD: 26 ms, 95% CI: 308 ms,  

 5Here, the high rejection rate is because we used a wide time window and 
strict rejection criteria to ensure clean data in our analyses.

F I G U R E  1   Topographic map of electrode placements and labels
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Mean [95% CI] Standard deviation Cohen's d [95% CI]

ERP

Mean 3.70 μV [3.34 μV, 4.07 μV] 4.11 μV 0.90 [0.77, 1.03]

Maximum 7.82 μV [7.42 μV, 8.23 μV] 4.59 μV 1.71 [1.56, 1.85]

Base-to-Peakvii 10.52 μV [10.12 μV, 10.91 μV] 4.49 μV 2.34 [2.18, 2.50]

FFT

Delta 1.19 μV2 [0.86 μV2, 1.51 μV2] 3.70 μV2 0.45 [0.32, 0.58]

Theta −0.48 μV2 [−0.54 μV2, −0.42 μV2] 0.73 μV2 −0.93 [−1.08, −0.78]

Time–frequency

Delta 0.82 μV2 [0.67 μV2, 0.97 μV2] 1.67 μV2 0.69 [0.56, 0.83]

Theta −1.70 μV2 [−1.90 μV2, −1.51 μV2] 2.25 μV2 −1.07 [−1.23, −0.91]

Note: All values calculated as the difference between gain and loss conditions (gain-loss). 95% CI = 95% confidence intervals.

T A B L E  1   Descriptive statistics and effect sizes for the reward positivity, delta, and theta across ERP, FFT, and time–frequency analysis 
methods

F I G U R E  2   ERP waveforms at 
electrode FCz illustrating the reward 
positivity. (a) grand averaged conditional 
waveforms with 95% confidence intervals, 
(b) grand averaged difference waveform 
with 95% confidence intervals, and (c) 
heatmap (two-dimensional representation 
where color corresponds to magnitude) of 
amplitude for each participant across time
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312 ms] (see Figure 3) and was centered on FCz and Cz 
(see Figure 5). Moreover, the gain waveform had a large 
negative deflection at peak latency 277  ms [SD: 37  ms, 
95% CI: 274  ms, 280  ms] and the loss waveform had a 
medium negative deflection at peak latency 292 ms [SD: 
30 ms, 95% CI: 290, 295 ms], see Table 2 and Figure 2. For 
mean peak, maximum peak, and base-to-peak measures, 
17.2%, 2.0%, and 0.0% of participants, respectively, dem-
onstrated a flipped reward positivity, see Figure 3 and S1.  
Lastly, power calculations for prospective sample size re-
quirements to detect a reward positivity are depicted in 
Table 3.

4  |   FAST FOURIER TRANSFORMS

4.1  |  Data acquisition, processing, and 
analyses

Data were acquired and processed in the same manner as was 
described for ERPs (see Section 3.1.), except using a segment 
of −500–1,000  ms. Fast Fourier transforms (FFT) for each 
trial were conducted on a segment of −500–1,000  ms from 
feedback stimulus onset, with 500 ms Hanning taper at the be-
ginning and end of the segment, and with normalization. Note 
that this method results in a resolution of 0.67 Hz, thus making 

F I G U R E  3   Illustration of individual data and error terms for the reward positivity. (a) Difference amplitudes for each amplitude extraction 
technique, (b) conditional amplitudes for the mean peak measure, and (c) peak timing of the reward positivity. Each black dot represents a 
participant's data and the middle black lines represent the mean. Rectangles surrounding the mean correspond to error bars. From widest (nearest to 
the mean) to thinnest (farthest from the mean): 95% confidence intervals, 1 standard deviation, 2 standard deviations, and 3 standard deviations

F I G U R E  4   EEG amplitudes using mean (blue) and maximal (red) measures with different window sizes around the reward positivity peak (a) 
and within baseline activity (b). Crossbar represents mean and 95% confidence intervals
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the lower frequencies less represented within analyses that the 
higher frequencies. The output was then averaged for each 
condition and participant. Difference FFTs were computed as 
the gain condition minus the loss condition, and grand aver-
aged FFTs for both conditions (gain and loss) and the differ-
ence were constructed by averaging data across participants.

All analyses were conducted at electrode site FCz and paral-
lel analyses at electrode site Cz can be found in Appendix A of 
Supporting Information. Descriptive (i.e., mean and standard 
deviation) and estimation statistics (i.e., 95% confidence 

intervals and Cohen's d) were computed for both delta (<3 Hz) 
and theta (3–7 Hz) power (Bernat et al., 2008)6. Additional de-
scriptives and estimation statistics were computed for each fre-
quency. Finally, we computed and analyzed the percentage of 
participants with reversed effects and conducted power analyses 
for both averaged and individual frequencies.

 6Please note that although we are here using a cut-off between delta and 
theta at 3 Hz, we rather suggest having your own data determine the 
frequency ranges of interest. To facilitate this, we also include individual 
frequency analyses.

Mean [95% CI] Standard deviation Cohen's d [95% CI]

ERP

Gain 8.02 μV [7.54 μV, 8.49 μV] 5.38 μV 1.49 [1.35, 1.63]

Loss 4.96 μV [4.53 μV, 5.38 μV] 4.87 μV 1.02 [0.89, 1.15]

FFT

Gain delta 14.33 μV2 [13.82 μV2, 14.85 μV2] 5.86 μV2 3.46 [3.13, 3.79]

Loss theta 3.58 μV2 [3.45 μV2, 3.71 μV2] 1.46 μV2 3.46 [3.13, 3.79]

Time–frequency

Gain delta 0.10 μV2 [0.10 μV2, 0.11 μV2] 0.04 μV2 3.31 [3.00, 3.63]

Loss theta 0.46 μV2 [0.44 μV2, 0.48 μV2] 0.22 μV2 2.92 [2.64, 3.21]

Note: 95% CI = 95% confidence intervals. All measures are a comparison of the conditional activity versus zero.

T A B L E  2   Descriptive statistics and effect sizes for conditional (gain and loss) amplitudes of the reward positivity, delta, and theta across ERP, 
FFT, and time–frequency analysis methods

F I G U R E  5   Topographic maps of grand averaged data for the reward positivity. Left: amplitudes from the difference waveform, middle: 
amplitudes from the gain waveform, right: amplitudes from the loss waveform. Top: traditional topographic maps, Bottom: percentage (%) of 
participants where the reward positivity peaked at the respective electrode
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4.2  |  FFT results

FFT analyses revealed that gain feedback elicited more 
delta power than loss feedback with a small effect, see 
Table  1 and Figures  6 and 7. In contrast, loss feedback 
elicited a medium effect of theta power related to gain 
feedback, see Table 1 and Figures 6 and 7. We further in-
vestigated gain-specific delta power and loss-specific theta 
power (i.e., within each respective condition) in Table 2. 
Further descriptive and estimation statistics for each fre-
quency can be found in Figure 8. Whereas delta power was 
centered on electrodes FCz and Cz, theta activity peaked 
on electrode FCz (see Figure 9). For delta and theta activ-
ity, 39.4% and 25.6% of participants, respectively, dem-
onstrated reversed neural power, see Figure  7 and S2. 
Moreover, 7.6% of participants had both reversed delta and 
theta power (i.e., 13.2% of those with reversed power had 
both delta and theta reversed). Prospective required sample 
sizes to detect delta and theta power effects are presented 
in Table 3 and prospective required sample sizes for each 
frequency individually are presented in Table 4.

5  |   TIME–FREQUENCY WAVELET 
ANALYSES

5.1  |  Data acquisition, processing, and 
analyses

Data were acquired and processed in the same manner as 
was described for ERPs (see Section 3.1.). The following 
time–frequency technique was applied to a segment size 

of −500 to 1,300  ms; however, analyses were conducted 
on, and plots were restricted to, a window size of −200 to 
1,000  ms. The additional 300  ms prior to and following 
the segment size was to ensure that time–frequency edge 
artifacts (artifacts that emerge at the beginning and end of 
the time window) would not be included within the time 
window of interest.

In this article we chose to use the complex Morlet wave-
let convolutions method of time–frequency decomposition 
because it is the most popular method in the neuroscience 
literature (Cohen, 2014). It is important to note, however, that 
there are many other methods of time–frequency decomposi-
tion that we could have used—for example, the Bernat group 
(2008, 2011, 2015) use the reduced inference distribution 
method (Bernat et al., 2005). Indeed, there also exists the fil-
ter-Hilbert method, the short-time Fourier transforms method, 
the multi-taper method, and many more (Cohen,  2014). 
Each method can have unique advantages in contrast to the  
others—for example, the reduced inference distribution 
method has an enhanced temporal resolution, circumventing 
a limitation of some other methods that contain a “smearing” 
of activity across time.

Time–frequency analyses were conducted as the prod-
uct of FFT-transformed EEG data and a normalized com-
plex Morlet wavelet (Gaussian-windowed complex sine 
wave, Morlet parameter of 6, frequency range of 1–30 Hz 
in 30 linear steps; in line with Cohen, 2014). Output was 
averaged for each condition and participant. Difference 
time–frequency wavelets were created by subtracting the 
loss condition from the gain condition, and grand average 
time–frequency wavelets were created for both conditions 
(gain and loss) and the difference by averaging data across 
participants.

All analyses were conducted at electrode site FCz; how-
ever, Appendix a of Supporting Information contain parallel 
analyses for Cz. First, we used the collapsed localizer method 
for extracting clusters of activity within time–frequency anal-
yses (Luck & Gaspelin, 2017). The collapsed localizer method 
involves first averaging all time–frequency data across condi-
tions and participants and then, using a power threshold (here 
5.5 μV2) to isolate cluster activity of interest. This process 
resulted in two clusters of interest: one within the delta band 
and one within the theta band. We then used the clusters to 
extract delta and theta power from the time–frequency con-
ditional and difference (gain–loss) wavelets for each partic-
ipant. Specifically, for the delta band we extracted any cell 
(time and frequency) within the clusters below 3 Hz and av-
eraged the output for each participant (Bernat et al., 2008); 
as no activity within the 1 Hz band reached our threshold, 
delta power simply corresponded to 2 Hz activity. We con-
ducted the same process for the theta band but restricted to 
the 3–7 Hz band (Bernat et al., 2008). Descriptive (i.e., mean 
and standard deviation) and estimation statistics (i.e., 95% 

T A B L E  3   Required within-subject sample size calculations for 
different levels of desired power for reward positivity, delta, and theta 
measures

Desired power

80% 85% 90% 95% 99%

Difference

ERP

Mean 12 13 15 18 25

Maximum 5 5 6 7 9

Base-to-Peak 4 4 4 5 6

FFT

Delta 40 46 53 65 91

Theta 11 12 14 17 23

Time–frequency

Delta 18 21 24 29 40

Theta 9 10 11 13 18

Note: Values calculated from Cohen's d effect sizes as determined using 
difference data (gain-loss).
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confidence intervals and Cohen's d) were then conducted on 
these data at electrode FCz. Also, descriptive and estimation 
statistics were computed for each frequency, the percentage 
of individuals with reversed effects were computed and sepa-
rately analyzed, and power calculations for both averaged and 
individual frequencies were conducted.

5.2  |  Time–frequency wavelet results

The collapsed localizer method for cluster extraction on 
time–frequency wavelet data determined that delta power 
was larger in the gain condition and that theta power was 
larger in the loss condition, see Table 1 and Figures 10 and 
11. Whereas feedback valence (gain and loss) elicited a 

medium effect of delta power, they elicited a large effect of 
theta power. The mean peak latencies (delta power: 358 ms 
[SD: 279 ms, 95% CI: 334, 383 ms]; theta power: 420 ms 
[SD: 161  ms, 95% CI: 405, 433  ms]) with descriptive and 
estimation statistics for averaged delta and theta bands are 
also plotted in Figure 11. The mean power and latency with 
descriptive and estimation statistics for each frequency are 
plotted in Figures 12 and S3, respectively. Furthermore, anal-
yses specifically tying delta power to the gain condition and 
theta power to the loss condition can be found in Table 2. 
Delta power peaked at electrode Cz and theta power peaked 
at electrode FCz, see Figure 13. For delta and theta power, 
30.8% and 19.6% of participants, respectively, demonstrated 
reversed neural effects, see Figures  11 and S4. Moreover, 
5.4% of participants had both reversed delta and theta activity 

F I G U R E  6   FFT line plots at electrode 
FCz illustrating delta and theta effects. 
(a) grand averaged conditional line plots 
with 95% confidence intervals, (b) grand 
averaged difference line plot with 95% 
confidence intervals, and (c) heatmap (two-
dimensional representation where color 
corresponds to magnitude) of power for 
each participant across frequencies
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(or in other words, 12.0% of participants with reversed ac-
tivity had both reversed delta and theta power). Prospective 
sample sizes for future research are described in Table 3 for 
both delta and theta power and prospective required sample 
sizes for each frequency are presented in Table 4.

6  |   COMPARISONS BETWEEN 
MEASURES

6.1  |  Data analyses

Next, we explored associations between different neural 
measures with a series of correlational analyses. All of these 
analyses only considered neural data as determined by the 
difference measure approach.

6.2  |  Comparison results

For FFT measures, there was a medium positive relationship 
between the reward positivity and delta power, no association 
between the reward positivity and theta power, and a small 
positive association between delta and theta power, see Table 5 
and Figure 14a-c. For time–frequency analyses, there was a 
medium-to-large positive association between the reward posi-
tivity and delta power, a small negative association between 
the reward positivity and theta power, and no association be-
tween delta and theta power, see Table 5 and Figure 14d-f.

7  |   INDIVIDUAL DIFFERENCES

7.1  |  Data analyses

Finally, we explored the associations of behavioral and 
demographic data with neural data. For gender effects 

F I G U R E  7   Illustration of individual data and error terms for delta and theta EEG power. (a) Difference amplitudes for delta and theta and (b) 
conditional amplitudes for delta and theta. Each black dot represents a participant's data and the middle black lines represent the mean. Rectangles 
surrounding the mean correspond to error bars. From widest (nearest to the mean) to thinnest (farthest from the mean): 95% confidence intervals,  
1 standard deviation, 2 standard deviations, and 3 standard deviations

F I G U R E  8   Illustration of individual power data and error terms 
for FFT derived analyses. Each black dot represents a participant's data 
and the middle black lines represent the mean. Rectangles surrounding 
the mean correspond to error bars. From widest (nearest to the mean) 
to thinnest (farthest from the mean): 95% confidence intervals, 1 
standard deviation, 2 standard deviations, and 3 standard deviations
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on neural activity, we compared females versus males 
using independent-samples t tests. For age and accuracy 
effects on neural activity, we conducted correlational  
analyses.

7.2  |  Associations results

Analyses determined small effects of gender in the reward 
positivity and time–frequency delta activity but not in any 

F I G U R E  9   Topographic maps of grand averaged data for delta and theta EEG power from FFT analyses. From left to right: delta power of 
the difference between gain and loss, theta power of the difference between gain and loss, delta power for the gain condition, and theta power for 
the loss condition. Top: traditional topographic maps, Bottom: percentage (%) of participants where delta or theta power peaked at the respective 
electrode

T A B L E  4   Required within-subject sample size calculations for different levels of desired power for each frequency

Cohen's d Desired power

80% 85% 90% 95% 99%

Difference

FFT

1 Hz 0.25 125 143 167 206 290

2 Hz 0.73 17 19 22 26 36

3 Hz −0.05 2,886 3,301 3,863 4,777 6,753

4 Hz −0.86 13 14 16 20 27

5 Hz −1.03 9 11 12 14 19

6 Hz −0.66 20 23 26 32 44

7 Hz −0.47 37 42 49 60 84

Time–frequency

2 Hz 0.69 18 21 24 29 40

3 Hz −0.17 269 308 360 444 628

4 Hz −0.96 11 12 13 16 22

5 Hz −1.10 9 10 11 13 17

6 Hz −0.92 11 13 14 17 24

7 Hz −0.75 16 18 21 25 35

Note: Values calculated from Cohen's d effect sizes as determined using difference data (gain-loss).
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other neural measures, see Table 6. Specifically, females had 
higher reward positivity amplitudes and delta power in com-
parison to males. In addition, we report the same analyses but 
when focusing on conditional data in Table 7. Correlational 
analyses determined small negative associations of age for 
the reward positivity and small positive associations for theta 
activity (for both FFT and time–frequency measures), see 

Table 8 and Figure 15a-e. Increases in age corresponded to 
smaller reward positivity amplitudes and less pronounced 
theta activity (as theta power effects are negatively peaked). 
We also provide the same analyses but for conditional data in 
Table 9 and corresponding plots in Figure 16a-f.

Correlational analyses also determined small to moderate 
negative associations between accuracy rates and all neural 

F I G U R E  1 0   Time–frequency wavelets at electrode FCz illustrating delta and theta power. (a) grand averaged conditional wavelet for the gain 
condition, (b) grand averaged conditional wavelet for the loss condition, (c) wavelets grand averaged across both the gain and loss conditions, and 
(d) grand averaged difference wavelet. Contour lines were determined using the collapsed isolator method

F I G U R E  1 1   Illustration of individual data and error terms for delta and theta power. (a) Difference amplitudes for delta and theta power, (b) 
conditional amplitudes for delta and theta power, and (c) peak amplitude times for delta and theta power. Each black dot represents a participant's 
data and the middle black lines represent the mean. Rectangles surrounding the mean correspond to error bars. From widest (nearest to the mean) to 
thinnest (farthest from the mean): 95% confidence intervals, 1 standard deviation, 2 standard deviations, and 3 standard deviations
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measures, see Table 8 and Figure 15f-J. Increases in accu-
racy corresponded to smaller reward positivity amplitudes 
and delta activity. Additionally, increases in accuracy corre-
sponded to more pronounced theta activity. These associations 

were seen in both FFT and time–frequency measures. Parallel 
analyses with conditional data are also reported in Table 9 
and Figure 16G-L.

8  |   DISCUSSION

Here, we sought to provide normative descriptives of the 
EEG correlates of feedback processing (i.e., ERP vs. fre-
quency vs. time–frequency), examinations of how EEG pro-
cessing methods are related, and selected recommendations 
for EEG methodology.

F I G U R E  1 2   Illustration of individual power data and error terms 
for time–frequency derived analyses for frequencies with effects. Each 
black dot represents a participant's data and the middle black lines 
represent the mean. Rectangles surrounding the mean correspond to 
error bars. From widest (nearest to the mean) to thinnest (farthest from 
the mean): 95% confidence intervals, 1 standard deviation, 2 standard 
deviations, and 3 standard deviations

F I G U R E  1 3   Topographic maps of grand averaged data for delta and theta power from time–frequency analyses. From left to right: delta 
power of the difference between gain and loss, theta power of the difference between gain and loss, delta power for the gain condition, and theta 
power for the loss condition. Top: traditional topographic maps, Bottom: percentage (%) of participants where delta or theta power peaked at the 
respective electrode

T A B L E  5   Correlational results between the reward positivity, 
delta activity, and theta activity

Pearson r [95% CI] p value

FFT

Reward positivity and delta .54 [.48, .60] <.0001

Reward positivity and theta −.09 [ −.17, .00] .0509

Delta and theta .19 [.11, .28] <.0001

Time–frequency

Reward positivity and delta .40 [.32, .47] <.0001

Reward positivity and theta −.16 [ −.24, −.07] .0004

Delta and theta −.03 [ −.11, .06] .5411

Note: 95% CI = 95% confidence intervals.
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8.1  |  Amplitude and power

For the reward positivity, we provided three different meas-
ures of amplitude: the base-to-peak, the maximum peak, and 
the mean peak. First, we must caution against base-to-peak 
measures. The base-to-peak method involves contrasting the 
reward positivity with the amplitude of the P200 ERP com-
ponent. This method does not isolate the reward positivity 
but rather contrasts effects between the reward positivity and 
the P200 (Picton et al., 2000). Indeed, in addition to valence 
effects on the reward positivity (gains were larger than 
losses), we found valence effects on the P200 (losses were 

larger than gains)7. The confounding P200 effect then in-
flated the measured reward positivity peak in our study and 
as such we recommend against using this method of peak 
detection.

We would also like to caution against maximum peak 
measures as they are biased by noise (e.g., unrelated bi-
ological and environmental noise; Luck,  2014; Luck & 
Gaspelin,  2017; Picton et  al.,  2000). Specifically, our 

 7We also found an effect of valence for the base (P200) of this measure,  
Md = −2.69 μV [−2.95 μV, −2.43 μV], SD = 2.95,  
Cohen's d = −0.91 [−1.04, −0.78].

F I G U R E  1 4   Scatterplots between different measures of neural activity. (a–c) frequency data correspond to FFT measures; (d–f) frequency 
data correspond to time–frequency measures. Blue lines correspond to linear regressions

T A B L E  6   Statistical results of gender (female and male) effects on difference neural activity. Difference = female–male

Difference [95% CI] t value p value Cohen's d [95% CI]

ERP

Reward positivity 1.29 μV [0.56 μV, 2.01 μV] 3.51 .0005 0.32 [0.12, 0.51]

FFT

Delta 0.71 μV2 [0.05 μV2, 1.36 μV2] 2.12 .0349 0.19 [0.00, 0.38]

Theta −0.09 μV2 [−0.22 μV2, 0.04 μV2] −1.30 .1945 −0.12 [−0.31, 0.07]

Time–frequency

Delta 0.43 μV2 [0.15 μV2, 0.72 μV2] 2.95 .0033 0.26 [0.07, 0.45]

Theta −0.19 μV2 [−0.60 μV2, 0.22 μV2] −0.93 .3514 −0.09 [−0.28, 0.10]

Note: 95% CI = 95% confidence intervals.
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analyses demonstrated the confound of noise as the max-
imum peak amplitudes were positively associated with the 
window size used for investigation (Figure 4). Indeed, we 

also demonstrated that maximum peak analyses produced 
artificial effects within baseline activity (Figure  4). Our 
findings indicate then that maximum peaks are biased 

T A B L E  7   Statistical results of gender (female and male) effects on conditional neural activity. Difference = female–male

Difference [95% CI] t value p value Cohen's d [95% CI]

ERP

Gain 0.77 μV [−0.22 μV, 1.76 μV] 1.53 .1269 0.14 [−0.05, 0.33]

Loss −0.42 μV [−1.33 μV, 0.50 μV] −0.90 .3690 −0.09 [−0.28, 0.11]

FFT

Gain delta 2.68 μV2 [1.61 μV2, 3.75 μV2] 4.91 <.0001 0.47 [0.27, 0.66]

Loss theta 0.72 μV2 [0.45 μV2, 0.99 μV2] 5.30 <.0001 0.50 [0.31, 0.70]

Time–frequency

Gain delta 0.02 μV2 [0.01 μV2, 0.03 μV2] 4.09 <.0001 0.39 [0.20, 0.59]

Loss theta 0.09 μV2 [0.05 μV2, 0.13 μV2] 4.41 <.0001 0.41 [0.22, 0.61]

Note: 95% CI = 95% confidence intervals.

T A B L E  8   Correlational results of age and accuracy effects on difference neural activity

Age Accuracy

Pearson r [95% CI] p value Pearson r [95% CI] p value

ERP

Reward positivity −.12 [−.20, −.03] .0104 −.26 [−.35, −.19] <.0001

FFT

Delta −.05 [−.14, .04] .2588 −.36 [−.44, −.28] <.0001

Theta .11 [.02, .20] .0140 −.31 [−.39, −.23] <.0001

Time–frequency

Delta −.03 [−.12, .06] .5249 −.23 [−.31, −.15] <.0001

Theta .11 [.02, .19] .0168 −.26 [−.34, −.18] <.0001

Note: 95% CI = 95% confidence intervals.

F I G U R E  1 5   Scatterplots of age (top) and accuracy (bottom) with difference neural activity. (b, c, g, h) frequency data correspond to FFT 
measures; (d, e, i, j) frequency data correspond to time–frequency measures. Blue lines correspond to linear regressions
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by noise, thus making them unreliable. In line with Luck 
(2014), we advocate against the use of maximum peak 
measures in ERP analyses.

As base-to-peak and maximum peak measures are biased 
methods of extracting ERP component amplitudes, we sug-
gest ERP research use mean peak measures (Luck,  2014; 
Luck & Gaspelin,  2017; Picton et  al.,  2000). Our findings 
demonstrated a large reward positivity effect (Cohen's d of 
0.90) with a mean peak of 3.70 μV when contrasting gain and 
loss feedback processing (Figures 2 and 3)—a value that is 
in line with the range of amplitudes described in Sambrook 
and Goslin (2015). With that said, we observed consider-
able amplitude variability across individuals. Specifically, 
we found a range of −8.60 μV to 16.28 μV for mean peak 
reward positivity amplitudes across participants (Figure 3). 
We propose that the descriptives we provide here can be used 
to understand what characterizes a “typical” reward positiv-
ity amplitude and classify atypical populations or potential 

outliers when considering neural activity elicited by a two-
armed bandit task.

Next, we investigated the EEG response to feedback 
processing using both FFTs and time–frequency wavelet 
analyses. We would like to first address that FFT and time–
frequency analyses captured delta and theta power effects 
similarly—delta power was larger for gains and theta power 
was larger for losses (Figures 6-8 and 10-12). We are unaware 
of any research using FFT techniques when assessing neural 
feedback processing and so we here demonstrate FFT results 
to parallel time–frequency findings and propose this method 
to be effective.

Delta power was 1.19 and 0.82 μV2 for FFT and time–fre-
quency analyses, respectively, and theta power was −0.48 and 
−1.70 μV2 for FFT and time–frequency, respectively. Although 
the raw values of delta and theta power varied considerably be-
tween FFT and time–frequency, the effect sizes were similar. 
For FFT and time–frequency, we found delta power Cohen's d 

T A B L E  9   Correlational results of age and accuracy effects on conditional neural activity

Age Accuracy

Pearson r [95% CI] p value Pearson r [95% CI] p value

ERP

Gain −.04 [−.13, .05] .3637 −.20 [−.28, −.11] <.0001

Loss .05 [−.04, .14] .2595 −.03 [−.12, .06] .5333

FFT

Gain delta −.14 [−.22, −.05] .0021 −.20 [−.28, −.11] <.0001

Loss theta −.20 [−.28, −.11] <.0001 .14 [.05, .22] .0022

Time–frequency

Gain delta −.15 [−.23, −.06] .0011 −.07 [−.16, .02] .1068

Loss theta −.19 [−.27, −.10] <.0001 .13 [.04, .21] .0038

Note: 95% CI = 95% confidence intervals.

F I G U R E  1 6   Scatterplots of age (top) and accuracy (bottom) with conditional neural activity. (a, b, g, h) ERP data correspond to gain and loss 
waveforms of the reward positivity, (c, d, i, j) frequency data correspond to FFT measures; (e, f, k, l) frequency data correspond to time–frequency 
measures. Blue lines correspond to linear regressions



      |  19 of 26WILLIAMS et al.

effect sizes to be 0.45 and 0.69, respectively, and theta power 
effect sizes to be −0.93 and −1.07, respectively. Thus, the dif-
ferences between methods were minor, yet FFT effects were 
smaller overall. Our findings are similar to research using prin-
cipal component analysis (PCA) that found delta power effect 
sizes to range from 0.80 to 1.31 and theta power effect sizes to 
range from −0.80 to −1.768 (Bernat et al., 2015, 2008; Bowers 
et al., 2018; Foti et al., 2015; Watts et al., 2017). Although these 
effect sizes are similar to our findings, they are on average 
larger—possibly due to major methodological differences (e.g., 
the use of PCA). It will be important for future research to ex-
plicitly compare the different methods of processing frequency 
amplitudes to understand the relationship between these effect 
sizes and these methods.

With the rise of using frequency and time–frequency 
decomposition techniques, it is important to note that 
the effect sizes for ERP analyses and frequency analyses 
were generally comparable, even though ERP measures 
are posited to be confounded by different overlapping  
components—an issue which may be circumvented when 
using time–frequency analyses. Specifically, Bernat and 
colleagues (2015, 2008, 2011; Nelson et  al.,  2011) have 
posited that time–frequency decompositions isolate the 
reward positivity from P300 contamination, resulting in a 
clearer observation of the underlying mechanisms of feed-
back processing.

8.2  |  Timing

The reward positivity is typically thought to peak between 
250 and 350  ms. Using a meta-analysis, Sambrook and 
Goslin (2015) suggested using a conservative time window 
of 270–300  ms but also indicated that a more liberal win-
dow of 240–340 ms was valid. Here, we found the timing 
of the reward positivity to center at 310  ms post feedback 
onset (Figure 3)—a finding in line with the existing body of 
literature but outside of the conservative range proposed by 
Sambrook and Goslin (2015). This apparent inconsistency in 
timing may indicate that it would be more appropriate to find 
the averaged peak time of participants’ difference waves, as 
we did here, and use a mean amplitude around this time in-
stead of using a predetermined time window. In other words, 
our results suggest that researchers should allow their data 
to guide their analyses—especially when considering how 
task variability across studies may affect component timing. 
For example, Krigolson and colleagues determined that in-
troducing cognitive load to a time-estimation task increased 
variability in the timing of feedback-related ERP components 
(Krigolson et al., 2012).

One topic which is rarely analyzed, however, is how large 
of a window around this peak to use—something that is 
often subjectively determined by inspection of the data (see 
Luck, 2014, Luck & Gaspelin, 2017, and Picton et al., 2000 
for alternative approaches). Here, we conducted an analy-
sis where we systematically increased the window size of 
the mean peak detection window (Figure 4). We then deter-
mined the inflection point of the resulting amplitude curve 
and used this to characterize the optimal window size –92 ms 
(or ±46 ms)—for peak detection. Based on our analysis, and 
as reported by others (Luck, 2014; Luck & Gaspelin, 2017; 
Picton et al., 2000), we would suggest using a simple mathe-
matical analysis of data, as we did here, to objectively deter-
mine the peak time and time window of the reward positivity. 
Our proposed method of determining window size is espe-
cially important due to task variability across research. Here, 
we used a two-armed bandit task and the specific time win-
dow we determined may not generalize to other tasks (Luck 
& Gaspelin, 2017), just as the timing suggested by Sambrook 
and Goslin (2015) did not generalize to ours.

Feedback evoked bursts of delta and theta power gener-
ally range from 150 to 400 ms and from 200 to 400 ms, re-
spectively (Bernat et al., 2008, 2011, 2015; Foti et al., 2015; 
Nelson et  al.,  2011; Watts et  al.,  2017, 2018). One caveat 
of time–frequency methods, however, is temporal smear-
ing. Temporal smearing is an artifact of the time–frequency 
method wherein effects are artificially spread across time. 
Although temporal precision can be increased via a time– 
frequency parameter—the Morlet parameter—this is at the 
cost of distorting across frequencies. Thus, it is important to 
remember when considering time–frequency analyses that 
the timing of the underlying cognitive processes may not cor-
respond with the timing of oscillatory clusters. In our data, 
we found that delta power peaked at 358 ms and theta power 
peaked at 420  ms post feedback onset (Figure  11). These 
times diverge from what was found with the reward positivity 
but are in line with Bernat and colleagues’ (2011) claim that 
the underlying time–frequency correlates extend further in 
time than their corresponding ERP counterparts.

8.3  |  Topography

The reward positivity is generally analyzed at electrodes 
FCz and Cz (and sometimes Fz or a pool of frontal elec-
trodes). Indeed, our topographic findings determined that 
when considering the reward positivity, FCz and Cz were 
both the electrode sites where evoked feedback effects 
were greatest (Figure 5)9. It is interesting, however, that Fz 

 8These Cohen's d effect sizes were computed from partial eta squared 
measures using the following equation: 2∗

√

η2

p

1−η2

p

 (Cohen, 1988).

 9We only present analyses at electrode FCz in this manuscript; however, 
have found that analyses at electrode Cz were very similar to FCz as 
presented here and have included them as Supporting Information.
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was considerably less prominent given that it is a popular 
site for analysis. Based on our findings, which were col-
lected using a two-armed bandit task, we put forth caution 
against using this latter electrode site when investigating 
the reward positivity.

The topography of delta and theta power is also consis-
tent across research. In congruence with research on the re-
ward positivity, both delta and theta power are commonly 
investigated at electrode sites FCz and Cz. Here, we found 
that the peak topography when using frequency decom-
position techniques was consistent with previous accounts 
(Bernat et  al.,  2008, 2011, 2015; Bowers et  al.,  2018; Foti 
et  al.,  2015; Nelson et  al.,  2011; Watts et  al.,  2017, 2018; 
Webb et al., 2017). Specifically, for FFTs the most prominent 
component peaks for delta power were at electrodes FCz and 
Cz and for theta power were at electrode FCz (Figure 9); for 
time–frequency delta power the peak was at Cz and for theta 
power it was at FCz (Figure 13)ix.

8.4  |  Uncharacteristic neural activity

For all measures used to examine the neural correlates of 
feedback processing, we have supplied descriptive statistics 
and effect sizes to better understand the variability that may 
be expected. Also, we have supplied graphics of individual 
data and we note that there was a subset of participants who 
did not follow the typical pattern of ERP, frequency, and/or 
time–frequency responses.

Let us first consider the reward positivity where a subset 
of our participants had a reversed amplitude (i.e., a negative 
rather than positive amplitude; Figure 3 and S1). When re-
search uses smaller sample sizes than we did here (e.g., 30), 
it is often easy to disregard these reversed reward positivities 
by concluding these scores to be due to noise or a lack of mo-
tivation. Here, however, we see that there was a significantly 
sized number of individuals (17.2%) with a negative rather 
than positive reward positivity. In other words, for these indi-
viduals, loss feedback elicited a stronger neural response than 
gain feedback.

This uncharacteristic reversed pattern of results was not 
isolated to ERPs and was also found in delta and theta power 
for FFT and time–frequency analyses (Figures 7, 11, S2, and 
S4). Frequency decomposition techniques found an increased 
number of individuals with these patterns (i.e., a reversed ef-
fect for delta or theta power) ranging from 19.6% to 39.4% 
across FFT and time–frequency analyses. Furthermore, the 
reversal of one frequency band was not linked to the reversal 
of the other (Figures S2 and S4). Specifically, reversed delta 
power effects did not correspond with reversed theta power ef-
fects (or vice versa)—a result that further supports the notion 
that delta and theta power reflect distinct neural processes in 
terms of feedback processing (Bernat et al., 2011, 2015).

Our correlation analyses indicate that these uncharacteris-
tic patterns of neural activity may be due to age and perfor-
mance. There was a negative relationship between age and 
the reward positivity and a positive relationship between age 
and theta activity—indicating a reduced sensitivity to loss 
feedback with age (Figure 15). Although these findings are 
in line with other research (Hill et al., 2018), both the cur-
rent findings and those by Hill and colleagues (2018) demon-
strate small effects that rely on samples composed majorly of 
young adults—thus the true influence of age on neural feed-
back processing remains unclear.

Participant performance demonstrated moderate nega-
tive relations with all neural activity—indicating a reduced 
sensitivity to gain feedback and enhanced sensitivity to 
loss feedback with decreased accuracy (Figure 15). These 
effects cannot simply be explained as reduced participant 
motivation, however, as this would imply diminished neu-
ral ERP effects with reduced performance (e.g., Umemoto 
et  al.,  2019), but we demonstrated enhanced ERP effects 
to reduced performance. Thus, in line with other research 
(e.g., Williams et al., 2020), our findings indicate a clear 
relationship between performance and sensitivity to 
feedback.

Altogether, the pattern of uncharacteristic neural activ-
ity more likely reflects a continuum of neural processing 
rather than qualitative differences within our sample (i.e., 
several sub-groups). To be specific, although our analyses 
do categorize individuals as having standard or reversed 
activity across measures (implying qualitatively different 
populations), these were simply to demonstrate that dif-
ferent patterns exist. Instead, we posit that these unchar-
acteristic patterns of data demonstrate the variability that 
exists within a single population—a notion supported by 
our age and performance correlational analyses, demon-
strating these as potential factors of variability. Future re-
search that concerns a range of individual factors may be 
able to further describe the differential neural responses 
across humans.

8.5  |  Relationship between ERPs and 
frequency decomposition techniques

The first note to make is that the reward positivity was 
associated with both delta and theta activity, albeit more 
strongly with delta power (Figure  14). Bernat and col-
leagues (2015) have also found this relationship and pos-
ited that delta activity reflects the P300 while theta activity 
reflects the reward positivity. They conclude this as evi-
dence for a confounding effect on the reward positivity 
from the P300. Further in line with Bernat and colleagues 
(2015) is that delta and theta power were not associated 
with each other (only for time–frequency analyses within 
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our findings)—indicating that the reward positivity may be 
measuring the difference between two independent cog-
nitive processes (see also Foti et  al.,  2011)—but which 
processes?

Delta activity is posited to reflect the processing of 
the complexity of rewarding events (Bernat et  al.,  2015; 
Walsh & Anderson, 2016) to motivate action selection 
(Cavanagh, 2015; Walsh and Anderson, 2016). In contrast, 
Cavanagh and Frank (2014; see also Cavanagh et al., 2012; 
Lin et al., 2018; Williams et al., 2019) have outlined frontal 
theta activity to reflect neural signals of surprise and uncer-
tainty. Specifically, they found the presence of theta power 
with errors, punishment, novelty, and conflict and conclude 
that this is evidence of its involvement as a signal for the need 
for cognitive control. If, as Bernat and colleagues (2015) 
posit, the reward positivity is a reflection of theta activity 
then it is not a signal specific to learning but of a need for 
adaptation (Cavanagh & Frank, 2014). Thus, delta activity— 
and a rewarding event—motivates immediate behaviors 
while theta activity—and a punishing event—corresponds 
to behavioral adjustments to improve future performance 
(Cavanagh, 2015; Cavanagh & Shackman, 2015).

8.6  |  Statistical power

Here, we have provided effect sizes for the reward positivity, 
delta power, and theta power and concomitant sample size 
power analyses. Before discussing appropriate sample sizes 
for using EEG to study feedback processing, we would like 
to discuss desired power in general. Due to recommendations 
by Cohen (1988), it is common in neuroscience to see re-
searchers strive for a desired power of .80. In other words, the 
convention is to design research so that we would find a true 
effect 80% of the time. Over 10 years ago, Dienes (2008) crit-
icized this convention when stating that if we hold chances of 
a Type I error at 5% (i.e., alpha = .05), we should be holding 
the same standard for Type II errors (i.e., power = .95). Due 
to both Cohen’s (1988) and Dienes’ (2008) notions, here we 
supply a range of required sample sizes calculated by varying 
the levels of desired power.

It is reassuring to see that EEG experiments on feedback 
processing generally use adequate sample sizes. Our find-
ings determined that when examining the reward positivity, 
achieving a power of .95 requires a sample of 18 partici-
pants (or 20 participants for those who prefer round num-
bers). Although FFT analyses do require more participants 
than time–frequency analyses, the required sample size is 
not absurd—65 participants for FFTs compared to 29 partici-
pants for time–frequency when seeking .95 power. The latter 
is closely in line with standard sample sizes (albeit slightly 
larger than many studies), yet the former is much more than 
what is traditionally seen in research. Thus, although FFT 

analyses are attainable when investigating delta activity, they 
do require a significant sample size to achieve high power 
and might then be considered only useful when necessary. 
Moreover, both FFT and time–frequency theta power sample 
sizes indicate less than 20 participants for .95 power, compa-
rable to ERP analyses—thus either FFT or time–frequency 
analyses are appropriate when investigating theta activity. 
With all that said, here we investigated the needed sample 
sizes to simply detect these neural components; larger sample 
sizes are needed to detect within or between-group modula-
tions of the reward positivity, delta power, and theta power.

9  |   CONCLUSIONS AND 
RECOMMENDATIONS

Here, we provide selected methodological comparisons and 
reference results for researchers investigating the ERP and 
oscillatory correlates of feedback processing. We have also 
shared the data analyzed within this article in the spirit of 
open science so that other researchers can investigate their 
own research questions about the neural correlates of feed-
back processing. Based on our findings, we will now provide 
selected methodological recommendations with the hopes of 
standardizing future research.

9.1  |  Mean peak detection is the most 
appropriate method for reward positivity 
quantification

We investigated different methods for detecting the peak 
of the reward positivity ERP component. Specifically, we 
analyzed base-to-peak, maximal peak, and mean peak meas-
ures. First, we found that the base-to-peak technique was 
confounded by effects on the P200 thus demonstrating that 
this method does not strictly measure the reward positivity 
but rather assesses the difference between these two compo-
nents. Second, we found noise to inflate the reward positivity 
amplitude when using the maximal peak detection method. 
Thus, in line with Luck (2014; Luck & Gaspelin, 2017) and 
Picton et al. (2000), we advocate against using base-to-peak 
and maximum peak methods for quantifying ERP compo-
nents such as the reward positivity in favor of using mean 
peak detection methods.

9.2  |  Consider both ERP and frequency 
analyses as they provide unique findings

The current study analyzed the neural responses of feed-
back evaluation with different methodological approaches— 
specifically, ERPs, FFTs, and time–frequency analyses. We 



22 of 26  |      WILLIAMS et al.

found both ERP and frequency analyses to determine com-
parable effects, but also that the reward positivity reflected 
multiple cognitive mechanisms. Specifically, the associa-
tions between delta power and theta power with the reward 
positivity but not with each other determined that this ERP 
component is elicited by several independent cognitive pro-
cesses. Bernat and others (2011, 2015) have posited that fre-
quency analyses better isolate underlying components than 
do ERP techniques. Thus, we recommend that research on 
feedback processing consider both methods of analysis as 
they can each provide unique perspectives.

9.3  |  Time–frequency analyses should be 
preferred over FFT analyses

Regarding frequency analyses, two methods may be used: 
frequency and time–frequency. We investigated both of these 
approaches and found that even though theta power effects 
were comparable across the methods, FFT analyses resulted 
in a reduced delta effect in comparison to time–frequency 
analyses. Indeed, achieving adequate power with FFT delta 
activity would require a sample size beyond what is standard 
for EEG research (although it is attainable). Thus, our find-
ings indicate that time–frequency analyses are more sensitive 
to the neural responses associated with feedback processing 
and may be more practical to use over FFT analyses when 
possible.

9.4  |  Complex designs can be facilitated by 
measuring individual neural differences

The main goal of this study was to describe different neural 
components of feedback processing with the intent of pre-
senting reference results for future research. We provided 
these by collecting data from 500 participants as they per-
formed a two-armed bandit task.

First, we must state that the generalizability of our re-
sults is unknown. Although we used a common probabi-
listic reward learning task, this task is markedly different 
from other tasks used to elicit the reward positivity such as 
time estimation tasks (e.g., Williams et al., 2017), complex 
learning tasks (e.g., Williams et al., 2018), and determinis-
tic learning tasks (e.g., Williams et al., 2020), thus whether 
our results would apply to other learning tasks is unclear. 
Furthermore, our participants were all university students 
at a Canadian university. Although student populations are 
common within psychology and neuroscience research, our 
findings may not generalize to other demographic popula-
tions and/or other nationalities. Thus, there must be cau-
tion when interpreting the results presented here within 
contexts outside of our research.

We do posit, however, that it may be useful to have par-
ticipants complete a 5-min two-armed bandit task prior 
to other learning tasks. The reasoning for this is that re-
searchers can use the results from the two-armed bandit, 
in conjunction with our findings here, to account for par-
ticipant individual differences in feedback elicited neural 
responses. Including individual neural differences from a 
simple probabilistic learning task can help better explain 
effects within complex designs and when considering 
small effects where between-participant variability has 
great influence.
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FIGURE S1 ERP waveforms at electrode FCz illustrating 
the reward positivity. A: grand averaged conditional wave-
forms with 95% confidence intervals of participants with a 
traditional reward positivity, B: grand averaged conditional 
waveforms with 95% confidence intervals of participants 
with a reversed reward positivity
FIGURE S2 FFT line plots at electrode FCz illustrating delta 
and theta activity. A: grand averaged conditional waveforms 
with 95% confidence intervals of participants with reversed 
delta activity, B: grand averaged conditional waveforms with 
95% confidence intervals of participants with reversed theta 
activity
FIGURE S3 Illustration of individual time peak data and 
error terms for time–frequency derived analyses for fre-
quencies with effects. Each black dot represents a partici-
pant’s data and the middle black lines represent the mean. 
Rectangles surrounding the mean correspond to error bars. 
From widest (nearest to the mean) to thinnest (farthest from 
the mean): 95% confidence intervals, 1 standard deviation, 2 
standard deviations, 3 standard deviations
FIGURE S4 Time–frequency wavelets at electrode FCz il-
lustrating delta and theta activity. A: grand averaged condi-
tional wavelets of participants with reversed delta activity, 
B: grand averaged conditional wavelets of participants with 
reversed theta activity. Contour lines demonstrate significant 
clusters derived from the full dataset
TABLE A1 Descriptive statistics and effect sizes for the re-
ward positivity, delta, and theta across ERP, FFT, and time–
frequency analysis methods. All values calculated as the 
difference between gain and loss conditions (gain-loss). 95% 
CI = 95% confidence intervals
TABLE A2 Descriptive statistics and effect sizes for con-
ditional (gain, loss) amplitudes of the reward positivity, 
delta, and theta across ERP, FFT, and time–frequency 
analysis methods. 95% CI = 95% confidence intervals. All 
measures are a comparison of the conditional activity ver-
sus zero
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TABLE A3 Required within-subject sample size calcula-
tions for different levels of desired power for reward pos-
itivity, delta, and theta measures. Values calculated from 
Cohen’s d effect sizes as determined using difference data 
(gain-loss)
TABLE A4 Required within-subject sample size calcula-
tions for different levels of desired power for each frequency. 
Values calculated from Cohen’s d effect sizes as determined 
using difference data (gain-loss)
TABLE A5 Correlational results between the reward posi-
tivity, delta activity, and theta activity. 95% CI = 95% confi-
dence intervals
TABLE A6 Statistical results of gender (female, male) ef-
fects on difference neural activity. Difference = female – 
male. 95% CI = 95% confidence intervals
TABLE A7 Statistical results of gender (female, male) ef-
fects on conditional neural activity. Difference = female – 
male. 95% CI = 95% confidence intervals
TABLE A8 Correlational results of age and accuracy ef-
fects on difference neural activity. 95% CI = 95% confidence 
intervals
TABLE A9 Correlational results of age and accuracy effects 
on conditional neural activity. 95% CI = 95% confidence 
intervals
FIGURE A1 Topographic map of electrode placements and 
labels
FIGURE A2 ERP waveforms at electrode FCz illustrat-
ing the reward positivity. A: grand averaged conditional 
waveforms with 95% confidence intervals, B: grand aver-
aged difference waveform with 95% confidence intervals, 
C: heatmap (two dimensional representation where colour 
corresponds to magnitude) of amplitude for each partici-
pant across time
FIGURE A3 Illustration of individual data and error terms 
for the reward positivity. A: Difference amplitudes for each 
amplitude extraction technique, B: conditional amplitudes for 
the mean peak measure, C: peak timing of the reward posi-
tivity. Each black dot represents a participant’s data and the 
middle black lines represent the mean. Rectangles surround-
ing the mean correspond to error bars. From widest (nearest 
to the mean) to thinnest (farthest from the mean): 95% confi-
dence intervals, 1 standard deviation, 2 standard deviations, 
3 standard deviations
FIGURE A4 EEG amplitudes using mean (blue) and max-
imal (red) measures with different window sizes around the 
reward positivity peak (A) and within baseline activity (B). 
Crossbar represents mean and 95% confidence intervals
FIGURE A5 Topographic maps of grand averaged data for 
the reward positivity. Left: amplitudes from the difference 
waveform, middle: amplitudes from the gain waveform, 
right: amplitudes from the loss waveform. Top: traditional 
topographic maps, Bottom: percentage (%) of participants 

where the reward positivity peaked at the respective 
electrode
FIGURE A6 FFT line plots at electrode FCz illustrating 
delta and theta effects. A: grand averaged conditional line 
plots with 95% confidence intervals, B: grand averaged dif-
ference line plot with 95% confidence intervals, C: heatmap 
(two dimensional representation where colour corresponds to 
magnitude) of power for each participant across frequencies
FIGURE A7 Illustration of individual data and error terms 
for delta and theta EEG power. A: Difference amplitudes for 
delta and theta, B: conditional amplitudes for delta and theta. 
Each black dot represents a participant’s data and the middle 
black lines represent the mean. Rectangles surrounding the 
mean correspond to error bars. From widest (nearest to the 
mean) to thinnest (farthest from the mean): 95% confidence 
intervals, 1 standard deviation, 2 standard deviations, 3 stan-
dard deviations
FIGURE A8 Illustration of individual power data and error 
terms for FFT derived analyses. Each black dot represents 
a participant’s data and the middle black lines represent the 
mean. Rectangles surrounding the mean correspond to error 
bars. From widest (nearest to the mean) to thinnest (farthest 
from the mean): 95% confidence intervals, 1 standard devia-
tion, 2 standard deviations, 3 standard deviations
FIGURE A9 Topographic maps of grand averaged data for 
delta and theta EEG power from FFT analyses. From left to 
right: delta power of the difference between gain and loss, 
theta power of the difference between gain and loss, delta 
power for the gain condition, and theta power for the loss 
condition. Top: traditional topographic maps, Bottom: per-
centage (%) of participants where delta or theta power peaked 
at the respective electrode
FIGURE A10 Time–frequency wavelets at electrode FCz 
illustrating delta and theta power. A: grand averaged con-
ditional wavelet for the gain condition, B: grand averaged 
conditional wavelet for the loss condition, C: wavelets grand 
averaged across both the gain and loss conditions, and D: 
grand averaged difference wavelet. Contour lines were deter-
mined using the collapsed isolator method
FIGURE A11 Illustration of individual data and error terms 
for delta and theta power. A: Difference amplitudes for delta 
and theta power, B: conditional amplitudes for delta and theta 
power, C: peak amplitude times for delta and theta power. Each 
black dot represents a participant’s data and the middle black 
lines represent the mean. Rectangles surrounding the mean 
correspond to error bars. From widest (nearest to the mean) to 
thinnest (farthest from the mean): 95% confidence intervals, 1 
standard deviation, 2 standard deviations, 3 standard deviations
FIGURE A12 Illustration of individual power data and error 
terms for time–frequency derived analyses for frequencies 
with effects. Each black dot represents a participant’s data 
and the middle black lines represent the mean. Rectangles 
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surrounding the mean correspond to error bars. From widest 
(nearest to the mean) to thinnest (farthest from the mean): 
95% confidence intervals, 1 standard deviation, 2 standard 
deviations, 3 standard deviations
FIGURE A13 Topographic maps of grand averaged data for 
delta and theta power from time–frequency analyses. From 
left to right: delta power of the difference between gain and 
loss, theta power of the difference between gain and loss, 
delta power for the gain condition, and theta power for the 
loss condition. Top: traditional topographic maps, Bottom: 
percentage (%) of participants where delta or theta power 
peaked at the respective electrode
FIGURE A14 Scatterplots between different measures of 
neural activity. A-C: frequency data correspond to FFT mea-
sures; D-F: frequency data correspond to time–frequency 
measures
FIGURE A15 Scatterplots of age (top) and accuracy (bot-
tom) with difference neural activity. B, C, G, H: frequency 

data correspond to FFT measures; D, E, I, J: frequency data 
correspond to time–frequency measures. Blue lines corre-
spond to linear regressions
FIGURE A16 Scatterplots of age (top) and accuracy (bot-
tom) with conditional neural activity. A, B, G, H: ERP data 
correspond to gain and loss waveforms of the reward positiv-
ity, C, D, I, J: frequency data correspond to FFT measures; E, 
F, K, L: frequency data correspond to time–frequency mea-
sures. Blue lines correspond to linear regressions
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