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a b s t r a c t

As humans, we rely on intuitive reasoning for most of our decisions. However, when there

is a novel or atypical decision to be made, we must rely on a slower and more deliberative

thought processdanalytical reasoning. As we gain experience with these novel or atypical

decisions, our reasoning shifts from analytical to intuitive, which parallels a reduction in

the need for cognitive control. Here, we sought to confirm this claim by employing elec-

troencephalographic (EEG) measures of cognitive control as participants performed a

simple perceptual decision-making task. Specifically, we had participants categorize

“blobs” into families based on their visual attributes so we could examine how their

reasoning changed with learning. In a key manipulation, halfway through the experiment

we introduced novel blob families to categorize, thus temporarily increasing the need for

analytical reasoning (i.e., cognitive control). Congruent with past research, we focused our

EEG analyses on frontal theta activity as it has been linked to cognitive control and

analytical thinking. As hypothesized, we found a transition from analytical to intuitive

decision-making systems with learning as indexed by a decrease in frontal theta power.

Further, when the novel blobs were introduced at the midpoint of the experiment, we

found that decisions about these stimuli recruited analytical reasoning as indicated by

increased theta power in comparison to decisions about well-practiced stimuli. We pro-

pose our findings to reflect prediction errors to decision demandsda monitoring process

that determines whether our expectations of demands are met. Shifting from analytical to

intuitive reasoning thus reflects the stabilization of our expectations of decision demands,

which can be violated with unexpected demands when encountering novel stimuli.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

As humans, we avoid putting out effort whenever we can

(Kool, McGuire, Rosen, & Botvinick, 2010). As a result, we rely

on gut-hunches and heuristics to guide us in everyday de-

cisions and only put forth effort when something important

comes along; we reluctantly take some extra time to ensure

we are making the best possible decision (DeNeys &

Pennycook, 2019; Evans & Stanovich, 2013; Kahneman, 2011).

Dual-process decision-making theory describes this as the

trade-off between intuitive and analytical reasoning (DeNeys

& Pennycook, 2019; Evans & Stanovich, 2013; Kahneman,

2011). Within this framework, the majority of our decisions

are governed by heuristics. For example, on our commute

home from work, we instinctively turn onto our street. But

sometimes we must think something through and spend

effort in doing so. For instance, whenwe deliberate whether to

move to a new city for a job. In general, intuitive reasoning is

thought to be faster but less accurate than analytical reason-

ingdbut this is an acceptable trade-off because most of our

intuitive decisions work out (Evans & Stanovich, 2013;

Norman et al., 2017). That is, intuitive reasoning is effective

when everything is familiar and our responses are well-

practiced, a situation that defines most of our daily decisions.

If intuition is so great, why do we ever need to be analyt-

ical? As noted above, intuitive reasoning fails when a situation

is unfamiliar or uncertain and we do not have a rehearsed

response. Another way of putting this is that intuitive

reasoning fails us whenwe encounter something that is novel

or atypical (Cavanagh& Frank, 2014;Williams et al., 2021a). Let

us say, on a walk to get coffee you are texting on your cell-

phone, and you take the wrong turn. You end up lost in an

unknown neighbourhood. Because intuitions rely on our past

knowledge (Croskerry, 2009, 2017; Evans & Stanovich, 2013;

Lin, Saunders, Hutcherson, & Inzlicht, 2017), in this novel

neighbourhood you are going to have to start thinking and

looking for signs that will help you find your way out. This is,

of course, effortful and analytical. However, just finding your

way out does not mean that the next time you end up in this

same neighbourhood you will be able to rely on intuitions

because it is still an atypical place for you to be (Ericsson,

Krampe, & Tesch-R€omer, 1993; Williams et al., 2021a).

Considerable experience is needed for something to become

intuitive (Ericsson et al., 1993).

Indeed, experience allows us to shift from making analyt-

ical to intuitive decisions (Ericsson et al., 1993). We have all

heard that practicemakes perfect and that is exactlywhatwe are

talking about here. Let us think about learning a new skill,

such as driving. The first time you sat behind the wheel of a

car, you likely had more to think about than your brain could

handle. Youwere confrontedwith a load of gauges, the pedals,

and of course the steering wheel. Moreover, you do not know

what to pay attention to, so you try and pay attention to all of

it. Every decision you makedfor example pulling onto the

street from your drivewaydis a stressful process requiring

cognitive effort. However, driving gets easier with practice
and now as an expert driver you can hold a conversation with

your passenger while listening to the radio and drinking a

coffee all as you commute along a busy highway.

So, what dissociates intuitive and analytical thinkingdor

in other words, what changes as you practice making de-

cisions? Emerging research suggests that analytical decision

making requires cognitive control (Kool, Shenhav, &

Botvinick, 2017; Pennycook, Fugelsang, & Koehler, 2015;

Williams et al., 2019, 2021a, 2021b) e a mechanism that

functions to coordinate cognitive processes. 12Neuroimaging

research has described cognitive control to coordinate brain

networks and recent electroencephalographic (EEG) research

has explicitly linked neural signals of cognitive control to

analytical thinking (Cavanagh, Figueroa, Cohen, & Frank,

2012; Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015;

Eisma, Rawls, Long, Mach, & Lamm, 2021; Umemoto, Inzlicht,

&Holroyd, 2019;Williams et al., 2019, 2021a, 2021b). According

to Cavanagh and Frank, a neural brain oscillation, specifically

frontal theta band activity (4e7 Hz), reflects cognitive control

(Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015; Eisma

et al., 2021) and has been linked to control demands

(Cavanagh & Shackman, 2015; Eisma et al., 2021). Work by our

laboratory has elaborated on these findings by linking theta

oscillations (i.e., cognitive control) to analytical thinking. For

example, in 2019 (Williams et al., 2019) we showed increased

frontal theta power corresponded to analytical rather than

intuitive reasoning. In 2021 (Williams et al., 2021a), we further

demonstrated that, during reasoning, increased theta power

was an indicator of surprise, which reflected a novel or atyp-

ical environment and thus also the need to recruit cognitive

control to reason analytically. Further in 2021 (Williams et al.,

2021b), we linked theta power to a person's tendency to

respond analytically when completing word problems. Alto-

gether, frontal theta oscillations are related to analytical

thinking. However, our previous work contrasted the neural

activity of people when placed in situations where they either

needed to reason analytically or not. What is yet to be inves-

tigated is how cognitive control, as reflected by theta oscilla-

tions, changes with learning.

Here we sought to investigate how neural signals of

cognitive control change as someone shifts from reasoning

analytically to reasoning intuitively. To examine this, we

had participants classify complex shapesdwhich we call

blobsdinto different families. We investigated how cognitive

control, as indexed by theta power, changed with experi-

ence. We hypothesized that theta power, and thus cognitive

control, would decrease with learning, implying the transfer

from analytical to intuitive reasoning. In a critical manipu-

lation, halfway through the experiment we introduced two

new families of blobs to determine whether these novel

stimuli would elicit increased cognitive control relative to

stimuli which the participants had already learned. Here, we

hypothesized that the introduction of novel stimuli at the

halfway point of the study would be associated with

increased theta power when making decisions about these

new stimuli relative to decisions about previously learned

stimuli.

https://doi.org/10.1016/j.cortex.2023.02.005
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2. Materials and methods

2.1. Participants

Fifteen undergraduate students (Xage ¼ 19.60 years [SD: 3.26

years], 14 female, 1 male) from Dalhousie University partici-

pated in this study for course credit via the online sign-up

system. All participants had normal or corrected-to-normal

vision and provided informed consent approved by the

Research Ethics Board at Dalhousie University. Although we

did not compute an a priori power computation prior to data

collection, we here conducted a hypothetical a priori analysis

in G-Power for a one-way repeated measures ANOVA (one

group with three levels) design, searching for a large effect

size (h2p ¼ .14), using an alpha of .05, across three levels of

power (.80, .90, .95). The remaining G-Power arguments were

left at default (i.e., correlation among repeated measures ¼ .5,

and nonsphericity correction ¼ 1). The required sample sizes

for a large effect were 12, 15, and 18, for a power of .80, .90, and

.95, respectively. Thus, our design afforded us the ability to

detect a large effect at a power of .90.

2.2. Sample size and exclusion statement

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.

2.3. Apparatus and procedure

Participants sat in a dark, sound attenuated room in front of a

19” LCD computer monitor and responded to the task using a

Logitech game controller. The task (written in MATLAB

version, 8.3, Mathworks, Natick, MA, using the Psychophysics

Toolbox (Brainard, 1997)) consisted of participants classifying

different families of polygons, or more casually blobs. Six

families of blobs were constructed in the same way as
Fig. 1 e Task presentations with timing. On each trial, participa

delay, a blob family label is presented (here, the ‘A’ family) unt

match. Upon their response, a fixation cross precedes feedback
Krigolson and colleagues (Krigolson, Pierce, Holroyd, &

Tanaka, 2009) wherein six prototype blobs were created by

dividing a circle into 20 vertices, randomly placing the vertices

within 30e70% of the original circles radius and inter-

connecting them to form a closed polygon. Each family pro-

totype was then modulated into one hundred exemplars by

randomly adjusting the radius of each vertex by ±20%, thus

creating six families of blobs.

In this task, participants had to learn the blob-family

pairings through trial and error. Specifically, they saw a blob

and a family name underneath it and their task was to indi-

cate whether that family name was true to the blob or not.

Once they responded, they were told whether they were right

or wrong. Over trials, they learned to match the blobs to the

correct family. In detail, on each trial, participants first viewed

a fixation cross for 500e1000 ms, followed by a blob presented

in the center of the screen (see Fig. 1). After a 1000e1500 ms

delay, a family label (families were named from A to F) was

presented underneath the blob and the participants were to

report whether the blob fit into the family. Participants made

their selection using the green and red button on the Logitech

game controller where the green button indicated that the

blob and family matched, and the red button indicated that

they did not. The label was a correct match 50% of the time.

Following this, a second fixation cross appeared for

500e1000 ms and correct or incorrect feedback was presented

as a checkmark or an X, respectively, for 1000 ms. There were

two phases in this experiment in that the first half of the

experiment presented four families of blobs for participants to

learn and the second half of the experiment presented two

‘old’ families of blobs that were present in the first half of the

experiment and two ‘new’ families of blobs that participants

had not yet seen. Note that the order of presentation of blob

families were randomly determined across participants so

that the ‘old’ and ‘new’ blob families were not always the

same. Each half of the experiment consisted of three blocks of

100 trials and thus there were a total of 600 trials in this

experiment. Our analyses will focus on early trials of each half

of the experiment (when learning was highest) and categorize
nts see a fixation cross followed by a blob stimulus. After a

il the participant indicates whether the family and blob

(checkmark ¼ correct, X ¼ incorrect).

https://doi.org/10.1016/j.cortex.2023.02.005
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three conditions. The ‘Early’ condition reflects the initial four

families of blobs in the first half of the experiment, the ‘Old’

condition reflects the two families of blobs within the second

half of the experiment that were extensively learned in the

first half, and the ‘New’ condition reflects the two families of

blobs introduced in the second half of the experiment. Thus,

we are able to contrast practice effects on decision making by

comparing the Early and Old conditions and by comparing the

New and Old conditions.

2.4. Data acquisition and processing

Behavioural data were collected using a Logitech game

controller and were recorded using MATLAB. EEG data were

collected using a 64-electrode system with a 10e20 layout

(ActiCAP, Brainproducts GmbH, Munich, Germany) and recor-

ded using Brain Vision Recorder (Brainproducts GmbH,

Munich, Germany). Datawere recordedwith a sampling rate of

500Hzandfilteredwithanantialiasing low-passfilter of 245Hz

via an ActiCHamp amplifier (Brainproducts GmbH, Germany).

Electrode impedances were, on average, below 10 kU.

Although the data were collected in 2014, they were

analyzed in 2021 using MATLAB (version, 9.9, Mathworks,

Natick, MA) and custom MATLAB scripts and toolboxes

(github.com/neuro-tools: MATLAB-EEG-fileIO toolbox,

MATLAB-EEG-preProcessing toolbox, and MATLAB-EEG-

timeFrequencyAnalysis toolbox), which rely on EEGLAB

(Delorme & Makeig, 2004). All data were referenced to aver-

aged mastoids, except for two participants whose mastoid

electrodes were faulty and as such data were referenced to an

averaged electrode, filtered using a Butterworth passband fil-

ter (.1e30 Hz with a 4th order) and a notch filter (60 Hz, 2nd

order). Next, eye blinks were corrected using independent

component analyses (ICA) wherein ICA blink components

were visually identified by factor loadings and scalp topogra-

phies and EEG data were reconstructed after removing these

components. Datawere then segmented from�500 to 1500ms

respective of events of interests. The events of interests were

the onset of blob stimuli in the Early, Old, and New conditions.

Data were then baseline corrected using 200 ms prior to event

onset and run through an artifact rejection algorithm with a

150 mV max-min criteria. Any electrode that exceeded rejec-

tion rates of 20% were tagged as noisy or faulty for removal.

Thus far, we have described the first pass of data processing,

which we use to identify faulty electrodes. Our second pass of

data processing was exactly as just described except with the

removal of faulty electrodes at the beginning and the intro-

duction of re-constructing faulty electrodes using topographic

interpolation with spherical splines prior to segmentation.

Data were then transformed into time-frequency repre-

sentations using a Gaussian-windowed complex sine wave

with a normalized 6 cycle Morlet parameter to result in fre-

quencies from 1 to 30 Hz. As time-frequency transformations

create edge artifacts we then re-segmented data to be �200 to

1000ms respective of events of interest. Further, we only here

present data from 1 to 20 Hz and focus our analyses within

theta frequencies (roughly 4e8 Hz).
2.5. Data analysis

There were three conditions of interest considered in this

manuscript. The first is named the ‘Early’ condition wherein

we investigate the four blob families presented in the first half

of the experiment. Two of these four blob families are re-

investigated within the second half of the experiment, and

this is the ‘Old’ condition. Finally, two new families of blobs

are introduced within the second half of the experiment and

investigated as the ‘New’ condition. Although the families

share lots of features and as such are difficult to categorize,

participants performed better than we expected from pilot

research. The new blob families in the second half of the

experiment were learned at a very quick pace, likely due to

generalizability effects of what was learned in the first half of

the experiment. As such, we had to focus our analyses to early

trials of each experimental half and thus behavioural and

neural data for each condition and participant reflected the

average of the first five trials of the first/second half of the

experiment.

Our paradigm has participants make difficult classifica-

tions of complex stimuli and thus would recruit effortful de-

cision making systems of the brain to do so early in learning.

As participants becomewell practiced with learning, they rely

less heavily on effortful decision making systems in favour of

recruiting effortless decision making systems. As such, we

can investigate the effects of learning in two ways. First, we

can determine how decision making for a family of blobs

changes from the first half (Early condition) to the second half

(Old condition) of the experiment, and second we can

compare how decision making differs between learned blob

families (Old condition) and unlearned blob families intro-

duced in the second half of the experiment (New condition). In

other words, we will use the Old condition as an indicator of

learned and effortless decision making and compare this to

the two unlearned and effortful decision making conditions,

namely the Early and New conditions.

Behavioural measures of accuracy rates and reaction times

were determined for each condition (see Fig. 2A&B). To

determine significant differences in our data, we conducted

repeated-measures one-way ANOVAs and then planned

comparisons. The planned comparisons were repeated-

measures, two-tailed, t-tests (alpha ¼ .05) conducted to

compare the Early and the New conditions to the Old condi-

tion. Additionally, we provide effect sizes in the form of 95%

confidence intervals, h2p (for the ANOVAs), and Cohen's

d measures (for the planned comparisons).

Neural measures of decision making required the extrac-

tion of frontal theta components. First, we created grand

averaged time-frequency representations for each condition

(see Fig. 3AeC). For each comparison (i.e., Early versus Old and

New versus Old), we created difference time-frequency rep-

resentations by subtracting the Old condition from each of the

Early and New conditions (see Fig. 3D&E). At electrode FCz

(Williams et al., 2019, 2021a, 2021c), we then extracted a

cluster of theta activity for each of the comparisons. For the

Early-Old contrast, this resulted in a cluster that ranged from 4

https://doi.org/10.1016/j.cortex.2023.02.005
https://doi.org/10.1016/j.cortex.2023.02.005


Fig. 2 e Accuracy rates (A), reaction times (B), and frontal theta power (C) across conditions. Bars indicate means with 95%

confidence intervals. Asterix indicates significant effect and ns indicates non-significant effect.

Fig. 3 e Time-frequency plots of the Early (A), Old (B), and New (C) conditions, as well as of the difference between Early

minus Old (D) and the difference between New minus Old (E) e contour lines demonstrate theta clusters of interest. To

exemplify theta effects of interest, we applied an asymmetric Hamming window which peaked at 5 and 6 Hz. In addition,

topographic plots of the theta clusters of the difference between Early and Old (F) and the difference between New and Old

(G) across electrodes.
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to 8 Hz and from ~0 to ~400 ms post-blob stimulus onset (see

Fig. 3D). For the New-Old contrast, this ranged from 5 to 8 Hz

and from ~-50 to ~600 ms post-blob stimulus onset (see

Fig. 3E). Note that both components peak at similar fre-

quencies and times and that the latter extends prior to the

onset of the blob stimulus (i.e., 0 ms) due to temporal

smearing, an artifact of time-frequency transforms (Cohen,

2014).

We thenextracted thetaactivity for eachparticipant and for

theEarly andNewconditionsbyusing their respective clusters.

We also extracted theta activity for eachparticipant for theOld

condition by using the combination of both clusters to ensure

that the Old condition was consistent across both contrasts

(see Fig. 2C). First, we conducted a repeatedmeasures one-way

ANOVA and then planned comparisons. Planned comparisons

were conducted as repeated-measures, two-tailed, t-tests
(alpha ¼ .05) for each contrast and we also provide 95% confi-

dence intervals, h2p, and Cohen's d effect sizes.

2.6. Code and data availability

Our ethics package did not include the collection of consent

from our participants for the sharing of raw data; however, we

havemade summary data and all code available at https://osf.

io/vznqs/. Furthermore, we are unable to share task presen-

tation code as these have been in part lost since the collection

of data in 2014.

2.7. Pre-registration

No part of the study procedures or analyses were pre-

registered prior to the research being conducted.

https://osf.io/vznqs/
https://osf.io/vznqs/
https://doi.org/10.1016/j.cortex.2023.02.005
https://doi.org/10.1016/j.cortex.2023.02.005
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3. Results

For accuracy rates, reaction times, and frontal theta activity,

we conducted one-way, repeatedmeasuresANOVAs, and then

planned comparisons by contrasting the Early and New con-

ditionswith theOld condition, see Fig. 2. AnANOVA revealed a

significance in our accuracy data, F(2,28) ¼ 5.40, P ¼ .0104,

h2p ¼ .28, in that early accuracy rates (X ¼ 48% [35%, 61%]) were

statistically lower thanOld accuracy rates (X¼ 72% [60%, 84%]),

Xd ¼ �24% [�43%, �5%], t(14) ¼ �2.67, P ¼ .0183, d ¼ �.98, see

Fig. 2A. In contrast, New accuracy rates (X ¼ 65% [57%, 73%])

were not statistically different from Old accuracy rates,

Xd¼�7% [�22%, 8%], t(14)¼�.96,P¼ .3535,d¼�.35, see Fig. 2A.

An ANOVA did not reveal a significant effect in our reaction

time data, F(2,28)¼ .31, P¼ .7355 h2p ¼ .02, in that early reaction

times (X ¼ 909 ms [745 ms, 1,073 ms]) were not different from

Old reaction times (X ¼ 903 ms [781 ms, 1,026 ms]), Xd ¼ 6 ms

[�143 ms, 155 ms], t(14) ¼ .08, P ¼ .9361, d ¼ .03, see Fig. 2B.

Similarly, New reaction times (X ¼ 954 ms [800 ms, 1,107 ms])

were not statistically different from Old accuracy rates,

Xd ¼ 50 ms [�80 ms, 181 ms], t(14) ¼ .83, P ¼ .4215, d ¼ .30, see

Fig. 2B.

Neural analyses first required the identification of frontal

theta clusters for each contrast, see Fig. 3. Indeed, we found a

theta cluster for each contrast with similar frequency, timing,

and scalp topography, see Fig. 3DeG. Generally, these clusters

were from 4 to 8 Hz, 0e500 ms post-stimulus onset, and

frontal-central. Each cluster was used to extract theta activity

for each participant from the corresponding effortful condi-

tions (Early, New). As the old condition serves as a non-

effortful contrast for each of the effortful conditions, we

extracted data using the combination of both clusters. An

ANOVA revealed a significance in our theta power data,

F(2,28)¼ 3.46, P¼ .0455, h2p ¼ .20, in that the Early theta activity

(X ¼ 5.03mV2 [3.62 mV2, 6.45 mV2]) was statistically larger than

theta activity in the Old condition (X ¼ 4.08mV2 [3.24 mV2, 4.93

mV2]),Xd¼ .95mV2 [.04mV2, 1.86mV2], t(14)¼ 2.24, P¼ .0419, d¼ .82,

see Fig. 2C. The New theta activity (X ¼ 5.48mV2 [3.99 mV2, 6.97

mV2]) was also statistically larger than theOld condition's theta

activity, Xd ¼ 1.40mV2 [.26mV2, 2.54mV2], t(14) ¼ 2.63, P ¼ .0198,

d ¼ .96, see Fig. 2C.
4. Discussion

As expected, we found a decrease in theta power across

learning and propose this as neural evidence of a transfer

from analytical to intuitive reasoning over practice. Further

corroborating these findings is that we found a theta power

dissociation between novel and practiced decisions, suggest-

ing the change in theta activity were linked to learning. As a

reminder, novel and atypical decisions rely on the engage-

ment of cognitive control (Evans & Stanovich, 2013;

Pennycook et al., 2015; Williams et al., 2019, 2021a, 2021b) e a

neural mechanism that facilitates decision-making and in-

creases the coordination of different brain regions. With

practice of the same decisions, we see a shift of effortful
analytical reasoning to effortless intuitive reasoningdor in

other words, a reduction in the need for cognitive control

(DeNeys & Pennycook, 2019; Pennycook, 2017, pp. 5e27;

Pennycook et al., 2015). Here we demonstrated this shift by

measuring frontal theta activitydan EEG signal thought to

reflect the engagement of cognitive control (Cavanagh &

Frank, 2014; Cavanagh & Shackman, 2015; Lin, Saunders,

Friese, Evans, & Inzlicht, 2020; Williams et al., 2019, 2021a,

2021b). Specifically, we found that frontal theta oscillations

decreased with learning. We also introduced novel stimuli

halfway through the experiment and found that making

classification decisions about them required cognitive control

(i.e., analytical reasoning) as evidenced by increased theta

activity relative to the well-practiced stimuli, which relied on

effortless intuitive thinking.

These findings are evenmore interestingwhen considering

accuracy rates. Asmight be expected,we observed an increase

in accuracywith learning, yet we did not see reduced accuracy

for the novel stimuli introduced in the second half of the

experiment. To explain this, we propose that participants

were able to generalize their knowledge from the first half of

the experiment to the decisions made with these novel

stimuli. Butwhat is interesting is that therewas still a need for

cognitive control and analytical thinking, as evidenced by

increased theta oscillations, for the novel stimuli. As such, the

implementation of cognitive control and analytical thinking

for novel stimuli, as reflected by the proposed functionality of

theta activity (Pennycook et al., 2015; Proudfit, 2015; Umemoto

et al., 2019; Williams et al., 2019, 2021a, 2021b), without

decreased performance (as was the case with early stimuli)

implies that these signals are not simply a reflection of poor

performance but a reflection of effortful contemplation (Evans

& Stanovich, 2013; Kahneman, 2011).

Earlier we discussed getting lost in an unfamiliar neigh-

bourhood as an example of when you would need to employ

analytical decision-making to find your way out. Now, let us

say you have just moved and the neighbourhood you were

previously lost in is your new neighbourhood. At first, you

would need to employ analytical decision-making to navigate

your new environment, but over time you would learn the

streets and landmarks and eventually you could rely on

intuitive heuristics. As we are only human, we would most

likely only (eventually) learn a single route out of our neigh-

bourhood and stick to it. But what if one day there is unex-

pected construction, and your normal route is blocked off?

Well, you would again need to rely on your analytical

reasoning system to find a novel path. If the construction

lasted long enough, then the need for analytical reasoning

would diminish and you would eventually know that novel

path like the back of your hand, navigating it intuitively.

In the present study, we have shown evidence that we can

quantify this shift from analytical to intuitive reasoning, and

subsequent re-engagement of analytical reasoning when it is

needed. Here, these shifts were quantified as frontal theta

oscillations and associated with a person's previous experi-

ence with an item or event. We propose that, during

reasoning, theta oscillations reflect a prediction errorda

monitoring process wherein expectations are compared to

actual events (Alexander & Brown, 2011; Krigolson, 2018;

Proudfit, 2015; Williams et al., 2021c). Specifically, prediction
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errors emerge in response to unexpected decision

demandsdi.e., if a decision is more or less demanding than

expected. For example, walking along your normal neigh-

bourhood path has become your expectation, yet the disrup-

tion of this path by construction elicits a prediction error, as

your path is now going to be more demanding than usual.

Here, when we introduced novel families of blobs, de-

mands of the task became more difficult than expected and

prediction errors emerged. As such, the increased frontal

theta activity to novel stimuli during reasoning reflected

prediction errors concerning the demands of a decision.

Indeed, our findings are in line with research describing

frontal theta activity to be a signal of surprise in decision

making (Lin, Saunders, Hutcherson,& Inzlicht, 2018; Williams

et al., 2021a). Here, any unexpected event elicits a prediction

error and thus is surprising. Further, the Predicted Response

Outcome (PRO) model posits that these surprising events are

the consequence of a monitoring process that tracks the

likelihood of events, such as stimuli, responses, and their

outcomes (Alexander & Brown, 2011; Brown & Alexander,

2017; Vassena, Deraeve, & Alexander, 2020; Williams et al.,

2021a).

In line with the PROmodel, we provide evidence that these

prediction errors are a consequence of monitoring decision

making demands. Here, prediction errors emerge when deci-

sion demands are not as expectedde.g., when participants

encountered unexpected novel blob families to learn. As such,

increased theta activity is an indication of a prediction error

that recruits cognitive control to update one's expectations of

decision demands for future reasoning (Alexander & Brown,

2011; Brown & Alexander, 2017). Consequently, the shift

from analytical to intuitive reasoning then involves this

monitoring process that stabilizes our expectations of deci-

sion demands. Further, if a well-practiced decision presents

unexpected characteristics, then a prediction error emerges,

and cognitive control is employed to update our expectations.

Again, we pose that the prediction errors we are here

considering reflect a deviation of our expectations of the

decision's demands; however, it's important to note that this

is different from the literature investigating prediction errors

of outcome feedback (see Williams, Ferguson, Hassall,

Abimbola, & Krigolson, 2021 (Williams et al., 2021c) for a

detailed description of prediction errors of feedback).

Wherein prediction errors of decision demands reflect de-

viations from our expectations about the characteristics (e.g.,

the costs and benefits) of a decision, prediction errors of

outcomes reflect deviations from our expected performance.

Critically, these two prediction errors would occur at

different time points during the reasoning process where the

former would occur when faced with a judgment and the

latter would occur when faced with feedback of our perfor-

mance in that judgment.

Although distinct, these two types of prediction errors are

related. If we encounter a prediction error when considering a

judgment, this could indicate that we are less certain about

the decision to bemade. If this is the case, thenwemay expect

a decrease in performance for these judgments. Indeed, past

work (Krigolson, Hassall, & Handy, 2014) has demonstrated

this link where prediction errors of feedback propagated back

in the decision process to the judgment onset across learning.
As such, with well-practiced judgments, we may confidently

know our performance prior to getting feedback, but with

novel or less familiar judgments, we must rely on feedback as

we are uncertain about the decision to be made.

There is indeed another theoretical implication of our

findings. Here, we present evidence towards a shift from

analytical towards intuitive reasoning, signifying that these

modes of reasoning are then, in fact, the two extremes of a

continuum. This highlights a heated debate within the liter-

ature: whether intuitive and analytical reasoning are distinct

systems or part of a continuum within a single system (Evans

& Stanovich, 2013; Keren, 2013; Keren & Schul, 2009;

Kruglanski, 2013; Kruglanski & Gigerenzer, 2011; Osman, 2013;

Thompson, 2013). Indeed, the cognitive control literature is

depicted as a continuum (Alexander & Brown, 2011; Botvinick

& Cohen, 2014; Egner, 2017; Shenhav, Botvinick, & Cohen,

2013) and some dual-process theorists are now describing a

continuum that depends on personal experience with a de-

cision (Bago & Neys, 2017; Neys & Pennycook, 2019;

Thompson, Pennycook, Trippas, & Evans, 2018). However, we

are here limitedwith howmuchwe can indeed speak towards

one or the other theory and as such look forward to seeing

future research to further the debate.
5. Conclusion

To summarize, in the present study we 7,12,13demonstrated

that changes in theta oscillations reflected a transition from

analytical to intuitive reasoning with practice. Additionally,

we saw that introducing novel decisions in a well-practiced

environment also recruited cognitive control (i.e., increased

theta oscillations) to reason analytically and achieve accu-

racy. We propose that the transition from analytical to intui-

tive reasoning involves a process wherein our expectations of

decision demands are stabilized. Further, if an intuitive deci-

sion presents atypical characteristics, we recognize this in the

form of a prediction error to recruit cognitive control and

update our expectations.
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